(2008•閘北區(qū)一模)
lim
n→∞
[
1-n2
2+n2
+(
3
4
)n]
的值是
-1
-1
分析:先把
lim
n→∞
[
1-n2
2+n2
+(
3
4
)n]
等價轉(zhuǎn)化為
lim
n→∞
1-n2
2+n2
+
lim
n→∞
(
3
4
)
n
,進而得到
lim
n→∞
1
n2
-1
2
n2
+1
+0
,由此能求出基結(jié)果.
解答:解:
lim
n→∞
[
1-n2
2+n2
+(
3
4
)n]

=
lim
n→∞
1-n2
2+n2
+
lim
n→∞
(
3
4
)
n

=
lim
n→∞
1
n2
-1
2
n2
+1
+0

=-1.
點評:本題考查極限的運算,解題時要認真審題,仔細解答,注意極限運算法則的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)一模)已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an
-3n+21),其中λ為實數(shù),n為正整數(shù).Sn為數(shù)列{bn}的前n項和.
(1)對任意實數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)對于給定的實數(shù)λ,試求數(shù)列{bn}的通項公式,并求Sn
(3)設(shè)0<a<b(a,b為給定的實常數(shù)),是否存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)一模)在△ABC中,內(nèi)角A,B,C所對的邊長分別是a,b,c.
(Ⅰ)若c=2,C=
π
3
,且△ABC的面積S=
3
,求a,b的值;
(Ⅱ)若sinC+sin(B-A)=sin2A,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)一模)復(fù)數(shù)
3
2
i+
1
1-i
的虛部是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)一模)若f(x+2)=
tanx,x≥0
log2(-x),x<0
,則f(
π
4
+2)•f(-2)
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)一模)如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD,E、F分別是線段PA、CD的中點.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求EF和平面ABCD所成的角α;
(Ⅲ)求異面直線EF與BD所成的角β.

查看答案和解析>>

同步練習(xí)冊答案