2.若遞增的等差數(shù)列{an}的首項(xiàng)a1=1,且a1,a2,a4成等比數(shù)列,則數(shù)列{an}的前10項(xiàng)之和S10=55.

分析 設(shè)遞增的等差數(shù)列{an}的公差d>0,由a1=1,且a1,a2,a4成等比數(shù)列,可得(1+d)2=1×(1+3d),解得d,再利用求和公式即可得出.

解答 解:設(shè)遞增的等差數(shù)列{an}的公差d>0,
首項(xiàng)a1=1,且a1,a2,a4成等比數(shù)列,
∴(1+d)2=1×(1+3d),化為d2=d,d>0,解得d=1.
∴S10=10+$\frac{10×9}{2}$=55.
故答案為:55.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其求和公式、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|0<log4x<1},B={x||x|≤2},則A∩B=( 。
A.(0,1)B.(1,2]C.(1,2)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知中心在原點(diǎn)的雙曲線(xiàn)C的右焦點(diǎn)為(2,0),實(shí)軸長(zhǎng)為2$\sqrt{3}$.
(1)求雙曲線(xiàn)C的方程;
(2)若直線(xiàn)l:y=kx+$\sqrt{2}$與雙曲線(xiàn)C的左支交于A、B兩點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a^x},x≤1\\{x^2}-6x+8,x>1\end{array}\right.$(a>0,a≠1),若函數(shù)y=|f(x)|-a有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)的零點(diǎn)與g(x)=4x+2x-2的零點(diǎn)之差的絕對(duì)值不超過(guò)0.25,則f(x)可以是④(填寫(xiě)下列正確函數(shù)的序號(hào)).
①f(x)=$\frac{4x-3}{x}$②f(x)=(x-1)2③f(x)=ex-1④f(x)=4x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在如圖所示的算法流程圖中,輸出S的值為(  )
A.11B.12C.13D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知P:x2-x<0,那么命題P的一個(gè)必要非充分條件是( 。
A.0<x<1B.-1<x<1C.$\frac{1}{2}$<x<$\frac{2}{3}$D.$\frac{1}{2}$<x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$x2-alnx(a∈R).
(1)若函數(shù)f(x)的圖象在x=2處的切線(xiàn)方程為y=x+b,求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在如圖所示的正方形中隨機(jī)投擲10 000個(gè)點(diǎn),則落入陰影部分(曲線(xiàn)C為正態(tài)分布N(-1,1)的密度曲線(xiàn))的點(diǎn)的個(gè)數(shù)的估計(jì)值為( 。
附:若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
A.1 193B.1 359C.2 718D.3 413

查看答案和解析>>

同步練習(xí)冊(cè)答案