【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求的取值范圍.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

(1)由題意知:取得函數(shù)的導(dǎo)數(shù),分類(lèi)討論,即可求解函數(shù)的單調(diào)區(qū)間;

(2)由(1)知當(dāng)時(shí),不合題意; 當(dāng)時(shí),要使得要使有兩個(gè)零點(diǎn),必有,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)函數(shù)的單調(diào)性和最值,即可得到結(jié)論.

解:(1)由題意知:

,即時(shí),上單減,在單增

,即時(shí),

當(dāng)時(shí),單增;

當(dāng)時(shí),上單增,在單減,在上單增;

當(dāng)時(shí),上單增,在單減,在上單增.

(2)由(1)知當(dāng)時(shí),單增,故不可能有兩個(gè)零點(diǎn).

當(dāng)時(shí),只有一個(gè)零點(diǎn),不合題意.

當(dāng)時(shí),上單減,在單增,且時(shí),時(shí),.

故只要,解得:.

當(dāng)時(shí),上單增,在單減,在上單增.

因?yàn)?/span>也不可能有兩個(gè)零點(diǎn).

當(dāng)時(shí),上單增,在單減,在上單增

,故要使有兩個(gè)零點(diǎn),必有

即當(dāng)時(shí),有

因?yàn)?/span>

上單增,且時(shí),

.

故當(dāng)時(shí),不可能有兩個(gè)零點(diǎn).

綜上所述:當(dāng)時(shí),有兩個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,各個(gè)側(cè)面均是邊長(zhǎng)為的正方形,為線段的中點(diǎn)

(Ⅰ)求證:⊥平面;

(Ⅱ)求證:直線∥平面

(Ⅲ)設(shè)為線段上任意一點(diǎn),在內(nèi)的平面區(qū)域(包括邊界)是否存在點(diǎn),使,并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,使得為真命題,求的取值范圍;

2)若不等式的解集為D,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x(單位:百萬(wàn)元)與銷(xiāo)售額y(單位:百萬(wàn)元)之間有如下的對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70

1)畫(huà)出散點(diǎn)圖;

2)求y關(guān)于x的線性回歸方程.

3)如果廣告費(fèi)支出為一千萬(wàn)元,預(yù)測(cè)銷(xiāo)售額大約為多少百萬(wàn)元?

參考公式用最小二乘法求線性回歸方程系數(shù)公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),其中.

1)在區(qū)間上,是否存在最小值?若存在,求出最小值;若不存在,請(qǐng)說(shuō)明理由.

2)若函數(shù)的兩個(gè)極值點(diǎn)為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)下列命題:

①直線與函數(shù)的圖象相交,則相鄰兩交點(diǎn)的距離為

②點(diǎn) 是函數(shù)的圖象的一個(gè)對(duì)稱(chēng)中心;

③函數(shù)上單調(diào)遞減,則的取值范圍為

④函數(shù)對(duì)R恒成立,則.

其中所有正確命題的序號(hào)為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若曲線在點(diǎn)處有相同的切線,求函數(shù)的極值;

2)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (其中e是自然對(duì)數(shù)的底數(shù),kR)

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)函數(shù)有兩個(gè)零點(diǎn)時(shí),證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案