(本題滿分11分)設(shè)函數(shù)f (x)=x3-x2+ax.
(Ⅰ)函數(shù)f (x)在(11, 2012)內(nèi)單調(diào)遞減,求a范圍;
(Ⅱ) 若實(shí)數(shù)a滿足1<a≤2,函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,求證:g(x)的極大值小于等于10.
(Ⅰ) 解:f ′(x)=x2-(a+1)x+a=(x-1)(x-a).
由題意2012≤a…………4分【其他方法酌情給分】
(Ⅱ) (Ⅱ) 解:f ′(x)=x2-(a+1)x+a=(x-1)(x-a).
由于a>1,所以f (x)的極小值點(diǎn)x=a,則g(x)的極小值點(diǎn)也為x=a.……6分
而g ′ (x)=12x2+6bx-6(b+2)=6(x-1)(2x+b+2),所以,
即b=-2(a+1).又因?yàn)?<a≤2,……8分
所以 g(x)極大值=g(1)=4+3b-6(b+2)=-3b-8=6a-2≤10.
故g(x)的極大值小于等于10.…………………………11分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
α |
|
β |
|
π |
4 |
| ||
2 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省廣州市高三上學(xué)期第3次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
把正奇數(shù)數(shù)列中的數(shù)按上小下大、左小右大的原則排成如下三角形數(shù)表:
1
3 5
7 9 11
………………………
……………………………
設(shè)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個(gè)數(shù).
(1)若,求的值;
(2)若記三角形數(shù)表中從上往下數(shù)第行各數(shù)的和為,求證.(本題滿分14分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三第二次診斷性考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
(本題滿分12分)已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,)在直線y=x+上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),b3=11,且其前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=,數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式Tn>對一切n∈N*都成立的最大正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省高三十一月份階段性考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題滿分12分)
已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,)在直線y=x+上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),b3=11,且其前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=,數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式Tn>對一切n∈N*都成立的最大正整數(shù)k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com