8.在三角形△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足$\frac{a}{7}$=$\frac{4}$=$\frac{c}{5}$,則$\frac{sin2A}{sinB+sinC}$=( 。
A.$-\frac{11}{14}$B.$\frac{12}{7}$C.$-\frac{14}{45}$D.$-\frac{11}{24}$

分析 由題意設(shè)a=7k、b=4k、c=5k(k>0),由余弦定理求出cosA的值,由正弦定理和二倍角的正弦公式化簡(jiǎn)所求的式子,可得答案.

解答 解:∵$\frac{a}{7}=\frac{4}=\frac{c}{5}$,∴設(shè)a=7k、b=4k、c=5k,(k>0)
在△ABC中,由余弦定理得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$-\frac{1}{5}$,
由正弦定理得$\frac{2sinAcosA}{sinB+sinC}$=$\frac{2acosA}{b+c}$=$\frac{2×7k×(-\frac{1}{5})}{4k+5k}$=$-\frac{14}{45}$,
故選:C.

點(diǎn)評(píng) 本題考查正弦定理和余弦定理,以及二倍角的正弦公式,考查化簡(jiǎn)、變形能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知命題P:方程x2+mx+1=0有兩個(gè)不等的負(fù)實(shí)根.命題Q:方程4x2+4(m-2)x+1=0無實(shí)根.若“P或Q”為真,“P且Q”為假,則實(shí)數(shù)m的取值范圍是(1,2]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\sqrt{3}$sinωx•cosωx+cos2ωx-$\frac{1}{2}$(ω>0)的兩條相鄰對(duì)稱軸之間的距離為$\frac{π}{2}$.
(1)求ω的值;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,再將所得函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)-k在區(qū)間[-$\frac{π}{6}$,$\frac{2π}{3}$]上存在零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且$sinB(sinC+\sqrt{3}cosC)-\sqrt{3}$sinA=0,b=$\sqrt{3}$.
(1)設(shè)△ABC的周長(zhǎng)L=f(A),求f(A)的表達(dá)式,并求L的最大值;
(2)若a+c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex-e-x-xlna.
(1)若f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)討論f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,內(nèi)角A、B、C所對(duì)的邊為a、b、c,且滿足(2a-c)cosB=bcosC.
(1)求角B的值;
(2)若b=$\sqrt{3}$,求a-$\frac{1}{2}$c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)0<x1<x2,證明:$\frac{{f'({x_1})-f'({x_2})}}{{{x_1}-{x_2}}}>\frac{2}{{{x_1}+{x_2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1+a2+a3+a4=1,a5+a6+a7+a8=2,Sn=15,則項(xiàng)數(shù)n為(  )
A.12B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=cos(3x+$\frac{π}{3}$)+cos(3x-$\frac{π}{3}$)+2sin$\frac{3x}{2}$cos$\frac{3x}{2}$,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案