若向量滿足||=||=1,且+=,則向量,的夾角為( )
A.90°
B.60°
C.45°
D.30°
【答案】分析:根據(jù)所給的a•b+b•b=,代入條件運算,未知的只有夾角的余弦,求出夾角的余弦值,根據(jù)角的范圍,確定符合題意的角,得到結論.特別要注意向量夾角的范圍,這是易錯點.
解答:解:∵a•b+b•b=,
=
∴cosθ=,
∵θ∈[0,π],
,
故選B
點評:啟發(fā)學生在理解數(shù)量積的運算特點的基礎上,逐步把握數(shù)量積的運算律,引導學生注意數(shù)量積性質的相關問題的特點,以熟練地應用數(shù)量積的性質.?
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

平面內給定三個向量
a
=(3,2)
,
b
=(-1,2)
c
=(4,1)
,回答下列三個問題:
(1)試寫出將
a
b
,
c
表示的表達式;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求實數(shù)k的值;
(3)若向量
d
滿足(
d
+
b
)∥(
a
-
c
)
,且|
d
-
a
|=
26
,求
d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,2)
,
b
=(2,1)
(1)求向量(
a
+
b
與向量(
a
-
b
)的夾角θ;
(2)若向量
c
滿足:①(
c
+
a
)∥
b
;②(
c
+
b
)⊥
a
,求向量
c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•湖南)已知
a
,
b
是單位向量,
a
b
=0.若向量
c
滿足|
c
-
a
-
b
|=1,則|
c
|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知非零向量
a
,
b
的夾角為60°,且|
a
|=|
b
|=2
,若向量
c
滿足(
a
-
c
)•(
b
-
c
)=0
,則|
c
|
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•棗莊模擬)已知a,b是平面內兩個互相垂直的單位向量,若向量
C
滿足(a+
c
2
)•(b+
c
2
)=0
,則|
c
|的最大值是( 。

查看答案和解析>>

同步練習冊答案