18.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{3}sinφ}\\{y=cosφ}\end{array}}\right.$(φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C2的極坐標(biāo)方程為$\sqrt{2}ρsin({θ-\frac{π}{4}})=1$.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)曲線C1與C2相交于P、Q兩點(diǎn),求過(guò)P、Q兩點(diǎn)且面積最小的圓的標(biāo)準(zhǔn)方程.

分析 (1)曲線C1的參數(shù)方程消去參數(shù)φ,能求出曲線C1的普通方程;曲線C2的極坐標(biāo)方程轉(zhuǎn)化為ρsinθ-ρcosθ=1,由此能求出曲線C2的直角坐標(biāo)方程.
(2)過(guò)P、Q兩點(diǎn)且面積最小的圓是以線段PQ為直徑的圓,由$\left\{{\begin{array}{l}{\frac{x^2}{3}+{y^2}=1}\\{y=x+1}\end{array}}\right.$,得2x2+3x=0,由此利用中點(diǎn)坐標(biāo)公式求出圓心坐標(biāo),利用弦長(zhǎng)公式求出半徑,由此能求出過(guò)P、Q兩點(diǎn)且面積最小的圓的標(biāo)準(zhǔn)方程.

解答 解:(1)∵曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{3}sinφ}\\{y=cosφ}\end{array}}\right.$(φ為參數(shù)),
∴由$\left\{{\begin{array}{l}{x=\sqrt{3}sinφ}\\{y=cosφ}\end{array}}\right.$消去參數(shù)φ,得曲線C1的普通方程為$\frac{x^2}{3}+{y^2}=1$,
∵曲線C2的極坐標(biāo)方程為$\sqrt{2}ρsin({θ-\frac{π}{4}})=1$,
∴ρsinθ-ρcosθ=1,即y-x=1,即y=x+1.
∴曲線C2的直角坐標(biāo)方程為y=x+1.
(2)過(guò)P、Q兩點(diǎn)且面積最小的圓是以線段PQ為直徑的圓,令P(x1,y1),Q(x2,y2).
由$\left\{{\begin{array}{l}{\frac{x^2}{3}+{y^2}=1}\\{y=x+1}\end{array}}\right.$,得2x2+3x=0,
所以${x_1}+{x_2}=-\frac{3}{2},{y_1}+{y_2}={x_1}+{x_2}+2=\frac{1}{2}$,∴圓心坐標(biāo)為$({-\frac{3}{4},\frac{1}{4}})$,
又∵半徑$r=\frac{1}{2}|{PQ}|=\frac{1}{2}\sqrt{({1+{k^2}})[{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}]}=\frac{{3\sqrt{2}}}{4}$,
∴過(guò)P、Q兩點(diǎn)且面積最小的圓的標(biāo)準(zhǔn)方程為${({x+\frac{3}{4}})^2}+{({y-\frac{1}{4}})^2}=\frac{9}{8}$.

點(diǎn)評(píng) 本題考查曲線的普通方程、直角坐標(biāo)方程的求法,考查圓的標(biāo)準(zhǔn)方程的法,考查中位坐標(biāo)公式、弦長(zhǎng)公式、直角坐標(biāo)方程、極坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若變量x,y滿足約束條件$\left\{\begin{array}{l}y≤2x\\ y≥-2x,x≤3\end{array}$,則目標(biāo)函數(shù)z=x-2y的最大值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=|$\overrightarrow$|=1,則|$\overrightarrow{a}$+$\overrightarrow$|等于( 。
A.3B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知△ABC中,∠BAC=60°,AB=4,AC=3,若E在線段BC上,且BE=2EC,求∠EAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知隨機(jī)變量X服從正態(tài)分布N(1,σ2),且P(X≤0)=0.1,則P(1≤X≤2)=( 。
A.0.4B.0.1C.0.6D.0.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.以直角坐標(biāo)系xOy的坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=2cos(θ+$\frac{π}{4}$).
(1)求圓C的直角坐標(biāo);
(2)試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在正四面體ABCD中,M,N分別是BC和DA的中點(diǎn),則異面直線MN和CD所成角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=\sqrt{3}+2sinθ}\end{array}\right.$(θ為參數(shù)),若P是圓C與x軸的交點(diǎn),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)過(guò)點(diǎn)P的圓C的切線為l
(Ⅰ)求直線l的極坐標(biāo)方程
(Ⅱ)求圓C上到直線ρ(cosθ+$\sqrt{3}$sinθ)+6=0的距離最大的點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知向量$\overrightarrow a=(2,-1,1)$,$\overrightarrow b=(λ,1,-1)$,若$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則λ的取值范圍是{λ|λ<1且λ≠-2}.

查看答案和解析>>

同步練習(xí)冊(cè)答案