13.已知集合A={x|2<x<4},B={x|(x+4)(x-3)>0},則A∩(∁RB)等于( 。
A.{x|2<x≤3}B.{x|3≤x<4}C.{x|2<x<4}D.{x|2≤x<4}

分析 化簡集合B,求出B的補(bǔ)集,再根據(jù)交集的定義進(jìn)行計(jì)算即可.

解答 解:集合A={x|2<x<4},
B={x|(x+4)(x-3)>0}={x|x<-4或x>3},
RB={x|-4≤x≤3},
∴A∩(∁RB)={x|2<x≤3}.
故選:A.

點(diǎn)評 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.紅藍(lán)兩色車,馬、炮棋子各一枚,將這6枚棋子排成一列,其中每對同字的棋子中,均為紅棋子在前,藍(lán)棋子在后,滿足這種條件的不同的排列方式共有(  )
A.36種B.60種C.90種D.120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax-$\frac{2}{x}$-3lnx,其中a為常數(shù).
(Ⅰ)若函數(shù)f(x)的圖象在點(diǎn)($\frac{2}{3}$,f($\frac{2}{3}$))處的切線與直線x+y-2=0垂直,求函數(shù)f(x)在區(qū)間[$\frac{3}{2}$,3]上的值域;
(Ⅱ)若函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的公比為$\frac{1}{2}$,滿足S3=15,a1+2b1=3,a1+4b1=6.
(1)求數(shù)列{an},{bn}通項(xiàng)an,bn;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)是定義在[-1,1]上的奇函數(shù),f(1)=1,且若?a、b∈[-1,1],a+b≠0,恒有$\frac{f(a)+f(b)}{a+b}$>0,
(1)證明:函數(shù)f(x)在[-1,1]上是增函數(shù);
(2)若對?x∈[-1,1]及?a∈[-1,1],不等式f(x)≤m2-2am+1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知使關(guān)于x的不等式$\frac{2lnx}{x}$+1≥$\frac{m}{x}$-$\frac{3}{x^2}$對任意的x∈(0,+∞)恒成立的實(shí)數(shù)m的取值集合為A,函數(shù)f(x)=$\sqrt{16-{x^2}}$的值域?yàn)锽,則有( 。
A.B⊆AB.A⊆∁RBC.A⊆BD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對于任意兩個(gè)正整數(shù)m,n,定義某種運(yùn)算“※”,法則如下:當(dāng)m,n都是正奇數(shù)時(shí),m※n=m+n;當(dāng)m,n不全為正奇數(shù)時(shí),m※n=mn,則在此定義下,集合M={(a,b)|a※b=16,a∈N*,b∈N*}的真子集的個(gè)數(shù)是( 。
A.27-1B.211-1C.213-1D.214-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知F1,F(xiàn)2分別是橢圓$\frac{x^2}{a^2}$+y2=1(a>1)的左、右焦點(diǎn),A,B分別為橢圓的上、下頂點(diǎn),F(xiàn)2到直線AF1的距離為$\sqrt{2}$.
(I)求橢圓的方程;
(II)若過點(diǎn)M(2,0)的直線與橢圓交于C,D兩點(diǎn),且滿足$\overrightarrow{OC}$+$\overrightarrow{OD}$=t$\overrightarrow{OP}$(其中O為坐標(biāo)原點(diǎn),P為橢圓上的點(diǎn)),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在鈍角△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足b2+c2-a2=bc,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,a=$\frac{{\sqrt{3}}}{2}$,則b+c的取值范圍是( 。
A.$(1,\frac{3}{2})$B.$(\frac{{\sqrt{3}}}{2},\frac{3}{2})$C.$(\frac{1}{2},\frac{3}{2})$D.$(\frac{1}{2},\frac{3}{2}]$

查看答案和解析>>

同步練習(xí)冊答案