8.直線2x+3y+8=0與x-y-1=0的交點(diǎn)坐標(biāo)為(-1,-2).

分析 直線方程聯(lián)立即可得出.

解答 解:聯(lián)立$\left\{\begin{array}{l}{2x+3y+8=0}\\{x-y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$.
∴交點(diǎn)坐標(biāo)為(-1,-2).
故答案為:(-1,-2).

點(diǎn)評(píng) 本題考查了直線的交點(diǎn)坐標(biāo)與方程組的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知△ABC中2cosB•sinC=sinA,則三角形的形狀是( 。
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖是一個(gè)空間幾何體的三視圖,則該幾何體的表面積是(  )
A.1+$\sqrt{2}$+$\sqrt{3}$B.2+$\sqrt{2}$+$\sqrt{3}$C.3+$\sqrt{2}$+$\sqrt{3}$D.4+$\sqrt{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△OAB中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{2}{5}$$\overrightarrow{OB}$,AD與BC交于點(diǎn)M,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$.在線段AC上取一點(diǎn)E,在線段BD上取一點(diǎn)F,使EF過(guò)點(diǎn)M,設(shè)$\overrightarrow{OE}$=p$\overrightarrow{OA}$,$\overrightarrow{OF}$=q$\overrightarrow{OB}$.
(1)用$\vec a,\vec b$向量表示$\overrightarrow{OM}$
(2 )求證:$\frac{1}{6p}$+$\frac{1}{3q}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x≥0}\\{x+2y≥3}\\{2x+y≤3}\end{array}\right.$,則y-x的取值范圍為[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知△ABC的面積為$\frac{1}{4}({a^2}+{b^2}-{c^2})$,則角C的度數(shù)是( 。
A.45B.60C.120D.135

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.直線x+2y+3=0將圓(x-a)2+(y+5)2=3平分,則a=( 。
A.13B.7C.-13D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.周立波是海派清口創(chuàng)始人和《壹周•立波秀》節(jié)目的主持人,他的點(diǎn)評(píng)視角獨(dú)特,語(yǔ)言幽默犀利,給觀眾留下了深刻的印象.某機(jī)構(gòu)為了了解觀眾對(duì)《壹周•立波秀》節(jié)目的喜愛(ài)程度,隨機(jī)調(diào)查了觀看了該節(jié)目的140名觀眾,得到如下的列聯(lián)表:(單位:名)
總計(jì)
喜愛(ài)4060100
不喜愛(ài)202040
總計(jì)6080140
(Ⅰ)從這60名男觀眾中按對(duì)《壹周•立波秀》節(jié)目是否喜愛(ài)采取分層抽樣,抽取一個(gè)容量為6的樣本,問(wèn)樣本中喜愛(ài)與不喜愛(ài)的觀眾各有多少名?
(Ⅱ)根據(jù)以上列聯(lián)表,問(wèn)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為觀眾性別與喜愛(ài)《壹周•立波秀》節(jié)目有關(guān).(精確到0.001)
(Ⅲ)從(Ⅰ)中的6名男性觀眾中隨機(jī)選取兩名作跟蹤調(diào)查,求選到的兩名觀眾都喜愛(ài)《壹周•立波秀》節(jié)目的概率.
p(k2≥k00.100.050.0250.0100.005
k02.7053.8415.0246.6357.879
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,λ),且對(duì)任意x∈R,都有f(x+1)=f(x)+2.?dāng)?shù)列{an}滿(mǎn)足a1=λ-2,an+1=$\left\{\begin{array}{l}{2^n},n為奇數(shù)\\ f({a_n}),n為偶數(shù)\end{array}$.
(Ⅰ)當(dāng)x為正整數(shù)時(shí),求f(n)的表達(dá)式;
(Ⅱ)設(shè)λ=3,求an
(Ⅲ)若對(duì)任意n∈N*,總有anan+1<an+1an+2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案