(13分)已知函數(shù)

   (1)若方程內(nèi)有兩個不等的實根,求實數(shù)m的取值范圍;(e為自然對數(shù)的底數(shù))

   (2)如果函數(shù)的圖象與x軸交于兩點、.求證:(其中正常數(shù)).

解析:(1)由,

求導數(shù)得到:

,故有唯一的極值點

,且知

上有兩個不等實根需滿足:

故所求m的取值范圍為.………………………………………(6分)

(2)有兩個實根

兩式相減得到:

于是

,故

要證:,只需證:

只需證:

,則

只需證明:上恒成立.

于是由可知.故知

上為增函數(shù),則

從而可知,即(*)式成立,從而原不等式得證.……………

……………………………………………………………(13分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π
;
②已知O、A、B、C是平面內(nèi)不同的四點,且
OA
OB
OC
,則α+β=1是A、B、C三點共線的充要條件;
③若數(shù)列an恒滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知總體的各個體的值由小到大依次為2,3,4,7,a,b,12,13.7,17.3,20(a>0,b>0),且總體的中位數(shù)為10.5,若總體的方差最小時,則函數(shù)f(x)=ax2+2bx+1的最小值是
-9.5
-9.5

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年安徽省六安一中高三(下)第七次月考數(shù)學試卷(理科)(解析版) 題型:填空題

給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則;
②已知O、A、B、C是平面內(nèi)不同的四點,且,則α+β=1是A、B、C三點共線的充要條件;
③若數(shù)列an恒滿足(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達式為
(k∈N*).
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:河北省模擬題 題型:解答題

已知函數(shù)fx)=ax+lnx,其中a為常數(shù),設e為自然對數(shù)的底數(shù).
(Ⅰ) 當a=-1時,求fx)的最大值;
(Ⅱ) 若fx)在區(qū)間(0,e]上的最大值為-3,求a的值;
(Ⅲ)  當a=-1 時,試推斷方是否有實數(shù)解.

查看答案和解析>>

同步練習冊答案