已知函數(shù),,
(1)若,試判斷并用定義證明函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求證函數(shù)存在反函數(shù).

(1)增函數(shù);(2)參考解析

解析試題分析:(1)當(dāng)時(shí),,.通過函數(shù)的單調(diào)性的定義可證得函數(shù)單調(diào)遞增.
(2)由,所以將x的區(qū)間分為兩類即.所以函數(shù).由(1)可得函數(shù)是遞增函數(shù).應(yīng)用單調(diào)性的定義同樣可得函數(shù)是遞增.根據(jù)反函數(shù)的定義可得函數(shù)存在反函數(shù).
試題解析:(1)判斷:若,函數(shù)上是增函數(shù).
證明:當(dāng)時(shí),,
上是增函數(shù).2分
在區(qū)間上任取,設(shè),

所以,即上是增函數(shù).6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5b/f/zgrqk1.png" style="vertical-align:middle;" />,所以8分
當(dāng)時(shí),上是增函數(shù),9分
證明:當(dāng)時(shí),上是增函數(shù)(過程略)11分
在在上也是增函數(shù),當(dāng)時(shí),上是增函數(shù)12分
所以任意一個(gè),均能找到唯一的和它對(duì)應(yīng),
所以時(shí),存在反函數(shù)14分
考點(diǎn):1.函數(shù)的單調(diào)性.2.函數(shù)單調(diào)性的定義.3.反函數(shù)的概念.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•重慶)某村莊擬修建一個(gè)無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是偶函數(shù).
(1)求的值;
(2)設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),.
(1)解方程:;
(2)令,,求證:

(3)若是實(shí)數(shù)集上的奇函數(shù),且對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若,求證:函數(shù)上的奇函數(shù);
(2)若函數(shù)在區(qū)間上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:對(duì)任意的,存在唯一的,使;
(3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時(shí),有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知命題表示的曲線是雙曲線;命題函數(shù)在區(qū)間上為增函數(shù),若“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)試用函數(shù)單調(diào)性定義說明函數(shù)在區(qū)間上的增減性;
(3)若滿足:,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在R上的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y恒有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=-.
(1)求證:f(x)為奇函數(shù);
(2)求證:f(x)在R上是減函數(shù);
(3)求f(x)在[-3,6]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案