在如圖所示的直角坐標系中,一運動物體經(jīng)過點A(0,9),其軌跡方程為y=ax2+c(a<0),區(qū)間D:(6,7)為x軸上的給定區(qū)間,為使此物落在區(qū)間D內(nèi),a的取值范圍是________.


分析:先確定c的值,再利用零點存在定理,建立不等式組,即可得出結(jié)論.
解答:∵一運動物體經(jīng)過點A(0,9),其軌跡方程為y=ax2+c(a<0),
∴c=9
∴f(x)=y=ax2+9
∵(6,7)為x軸上的給定區(qū)間,此物落在區(qū)間D內(nèi),
∴f(6)>0,f(7)<0


故答案為:
點評:本題考查零點存在定理,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標平面上的矩形OABC中,|OA|=2,| OC |=
3
,點P,Q滿足
OP
=
λOA
AQ
=( 1-λ )
AB
  ( λ∈R )
,點D是C關(guān)于原點的對稱點,直線DP與CQ相交于點M.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)若過點(1,0)的直線與點M的軌跡相交于E,F(xiàn)兩點,求△AEF的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用如圖所示程序框圖在直角坐標平面上打印一系列點,則打印的點落在坐標軸上的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題A、B、C三個選答題,請考生任選一題作答,如果多做,則按所做的第一題計分.
A.(不等式選講選做題)若不等式|x-1|+|x-m|<2m的解集為∅,則m的取值范圍為
(-∞,
1
3
]
(-∞,
1
3
]

B.(幾何證明選講選做題)如圖所示,已知AB和AC是圓的兩條弦,過點B作圓的切線與AC的延長線相交于點D.過點C作BD的平行線與圓相交于點E,與AB相交于點F,AF=3,F(xiàn)B=1,EF=
3
2
,則線段CD的長為
4
3
4
3

C.(極坐標系與參數(shù)方程選做題)在極坐標系中,ρ(2,
π
3
)的直角坐標是
(1,
3
)
(1,
3
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標平面內(nèi),反比例函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用如圖所示的程序框圖在直角坐標平面上打印一系列的點,則打印的點落在坐標軸上的個數(shù)是(   )

A.0         B.  1       C.  2       D. 3

查看答案和解析>>

同步練習冊答案