【題目】(Ⅰ)拋物線的頂點在原點,坐標(biāo)軸為對稱軸,并經(jīng)過點,求此拋物線的方程.

(Ⅱ)已知圓: ),把圓上的各點縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的倍得一橢圓.求橢圓方程,并證明橢圓離心率是與無關(guān)的常數(shù).

【答案】(1)(2)

【解析】試題分析:(1)根據(jù)題意設(shè)出拋物線的標(biāo)準(zhǔn)方程,注意兩種形式,把點坐標(biāo)代入即可;(2)利用圖像的伸縮變換得到橢圓方程,計算橢圓離心率是一常數(shù),故與c無關(guān)

試題解析:(Ⅰ)依題意,若焦點在軸,設(shè)拋物線的方程為

代入, ,得,此時方程為:

若焦點在軸,設(shè)拋物線的方程為

代入, ,得,此時方程為:

所以,所求拋物線的方程為

(Ⅱ)設(shè)是圓: 上任一點,則為所求橢圓上經(jīng)過變換后的對應(yīng)點,

則有,即代入圓的方程得:

故所求的橢圓方程為:

又橢圓的長半軸的長為,半焦距為,故離心率無關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家為了鼓勵節(jié)約用水,實行階梯用水收費制度,價格參照表如表:

用水量(噸)

單價(元/噸)

0~20(含)

2.5

20~35(含)

3

超過20噸不超過35噸的部分按3元/噸收費

35以上

4

超過35噸的部分按4元/噸收費


(1)若小明家10月份用水量為30噸,則應(yīng)繳多少水費?
(2)若小明家10月份繳水費99元,則小明家10月份用水多少噸?
(3)寫出水費y與用水量x之間的函數(shù)關(guān)系式,并畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的定義域
(1)f(x)= ;
(2)f(x)= ;
(3)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )與軸交于, 兩點, 為橢圓的左焦點,且是邊長為2的等邊三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于, 兩點,點關(guān)于軸的對稱點為不重合),則直線軸交于點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形, 平面 中點.

(I)證明: 平面

(II)證明: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,且.設(shè)函數(shù)在區(qū)間內(nèi)單調(diào)遞減; 曲線軸交于不同的兩點,如果為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知變量 滿足約束條件 ,若目標(biāo)函數(shù) 僅在點(5,3)處取得最小值,則實數(shù)的取值范圍為_______________

查看答案和解析>>

同步練習(xí)冊答案