20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線的右支上,若|PF1|-|PF2|=b,且雙曲線的焦距為2$\sqrt{5}$,則該雙曲線方程為( 。
A.$\frac{{x}^{2}}{4}-{y}^{2}$=1B.$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{2}$=1C.x2-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{3}$=1

分析 由題意可得c=$\sqrt{5}$,即a2+b2=5,運(yùn)用雙曲線的定義,可得b=2a,解方程可得a,b,進(jìn)而得到雙曲線的方程.

解答 解:由雙曲線的焦距為2$\sqrt{5}$,
即有2c=2$\sqrt{5}$,可得c=$\sqrt{5}$,即a2+b2=5,
由|PF1|-|PF2|=b,及雙曲線定義可得|PF1|-|PF2|=2a,
即為2a=b,
即4a2=b2,
解得a=1,b=2,
則雙曲線的方程為x2-$\frac{{y}^{2}}{4}$=1.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用雙曲線的定義和焦距、基本量的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$.
(Ⅰ)若$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,求$|{\overrightarrow a+2\overrightarrow b}|$;
(Ⅱ)若$(2\overrightarrow a-\overrightarrow b)•(3\overrightarrow a+\overrightarrow b)=3$,求$\overrightarrow a$與$\overrightarrow b$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在五面體ABCDEF中,AB∥CD∥EF,CD=EF=CF=2AB=2AD=2,∠ACF=60°,AD⊥CD,平面CDEF⊥平面ABCD,P是BC的中點(diǎn),
(1)求異面直線BE與PF所成角的余弦值;
(2)在直線EF上,是否存在一點(diǎn)Q,使得PQ∥平面EBD,若存在,求出該點(diǎn);若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓$\frac{y^2}{4}+\frac{x^2}{3}=1$與拋物線y=ax2(a>0)有相同的焦點(diǎn),則拋物線的焦點(diǎn)到準(zhǔn)線的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-x.
(1)證明:對(duì)任意的x1,x2∈(0,+∞),都有|f(x1)|>$\frac{ln{x}_{2}}{{x}_{2}}$;
(2)設(shè)m>n>0,比較$\frac{f(m)+m-(f(n)+n)}{m-n}$與$\frac{m}{{m}^{2}-{n}^{2}}$的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若f(x)=2cos(ωx+φ)+m(ω>0)對(duì)任意實(shí)數(shù)t都有f(t+$\frac{π}{4}$)=f(-t),且f($\frac{π}{8}$)=-1,則實(shí)數(shù)m的值等于( 。
A.-3或1B.-1或3C.±3D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)p:實(shí)數(shù)x,y滿足x>1且y>1,q:實(shí)數(shù)x,y滿足x+y>3,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從1,2,3,4這4個(gè)數(shù)中,任取兩個(gè)數(shù),兩個(gè)數(shù)都是奇數(shù)的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=x3-2xf′(1)+1,則f′(0)的值為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

同步練習(xí)冊答案