1.已知三角形ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊a,b,c成等比數(shù)列,且a,2,c成等差數(shù)列,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,則角B=$\frac{π}{3}$.

分析 a,b,c成等比數(shù)列,且a,2,c成等差數(shù)列,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,可得b2=ac,a+c=4,cacosB=2.又b2=a2+c2-2accosB,聯(lián)立解出,即可得出.

解答 解:∵a,b,c成等比數(shù)列,且a,2,c成等差數(shù)列,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,
∴b2=ac,a+c=4,cacosB=2.
又b2=a2+c2-2accosB,∴b2=a2+c2-4,
∴(a+c)2-2ac-4=42-2ac-4=ac,化為ac=4.
與a+c=4聯(lián)立解得a=c=2,∴b=2.
∴△ABC是等邊三角形.
則角B=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其性質(zhì)、數(shù)量積運(yùn)算性質(zhì)、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)U=R,A={x|-3<x≤4},B={x|0≤x<8}.求A∩B,A∪B,∁UA,∁UB,∁U(A∩B),∁U(A∪B),(∁UA)∩(∁UB),(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在下列區(qū)間中,函數(shù)f(x)=($\frac{1}{2}$)x-x的零點(diǎn)所在的區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3 )D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖是計(jì)算首項(xiàng)為1的數(shù)列{an}前m項(xiàng)和Sn的算法框圖,
(1)判斷m的值;
(2)試寫出an與an+1的關(guān)系式;
(3)最后輸出的結(jié)果是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sinθ-2cosθ=0,則cos2θ+sin2θ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.畫出函數(shù)y=|x2-x-6|的圖象,指出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.化簡(jiǎn)cos(-2040°)等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不等式x2-x-6>0的解集是( 。
A.x>2,x<-3B.{x|x>2,x<-3}C.(-∞,-2)∪(3,+∞)D.x>3,x<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.${0.027^{\frac{1}{3}}}$×${({\frac{225}{64}})^{-\frac{1}{2}}}$÷$\sqrt{{{({-\frac{8}{125}})}^{\frac{2}{3}}}}$=$\frac{2}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案