求證函數(shù)y=x-
1x
在(0,+∞)上是增函數(shù).
分析:利用函數(shù)的單調(diào)性即可證明.
解答:證明:?0<x1<x2 ,
則f(x1)-f(x2)=x1-
1
x1
-(x2-
1
x2
)
=(x1-x2)(1+
1
x1x2
)

∵0<x1<x2.∴x1-x2<0,1+
1
x1x2
>0
,
∴f(x1)-f(x2)<0.即f(x1)<f(x2).
∴函數(shù)y=x-
1
x
在(0,+∞)上是增函數(shù).
點評:熟練掌握函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c是正常數(shù),且a,b,c互不相等,x,y,z∈(0,+∞),
(1)求證:
a2
x
+
b2
y
+
c2
z
(a+b+c)2
x+y+z
,并指出等號成立的條件;
(2)利用(1)的結(jié)論:
①求函數(shù)f(x)=
1
x
+
4
1-2x
+
25
1+x
(x∈(0,
1
2
))
的最小值,并求出相應(yīng)的x值;
②設(shè)a、b、c∈(0,1),求證:
a
1-bc2
+
b
1-ca2
+
c
1-ab2
a+b+c
1-abc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為(0,+∞),并滿足以下條件:
①對任意的x>0,y>0,有f(xy)=f(x)+f(y); ②x>1時,f(x)>0.
(1)求f(1)的值;
(2)求證:f(x)在(0,+∞)上是單調(diào)增函數(shù);
(3)若x滿足f(
1
2
)≤f(x)≤f(2)
,求函數(shù)y=2x+
1
x
的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)對于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點P1為直線l:2x-y+2=0與x軸的交點,點Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請問,是否存在一個定義域為R的函數(shù)y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•長寧區(qū)二模)定義:對函數(shù)y=f(x),對給定的正整數(shù)k,若在其定義域內(nèi)存在實數(shù)x0,使得f(x0+k)=f(x0)+f(k),則稱函數(shù)f(x)為“k性質(zhì)函數(shù)”.
(1)判斷函數(shù)f(x)=
1
x
是否為“k性質(zhì)函數(shù)”?說明理由;
(2)若函數(shù)f(x)=lg
a
x2+1
為“2性質(zhì)函數(shù)”,求實數(shù)a的取值范圍;
(3)已知函數(shù)y=2x與y=-x的圖象有公共點,求證:f(x)=2x+x2為“1性質(zhì)函數(shù)”.

查看答案和解析>>

同步練習(xí)冊答案