【題目】已知數(shù)列是由正整數(shù)組成的無窮數(shù)列.若存在常數(shù),使得任意的成立,則稱數(shù)列具有性質(zhì).
(1)分別判斷下列數(shù)列是否具有性質(zhì); (直接寫出結(jié)論)
①
②
(2)若數(shù)列滿足,求證:“數(shù)列具有性質(zhì)”是“數(shù)列為常數(shù)列”的充分必要條件;
(3)已知數(shù)列中且.若數(shù)列具有性質(zhì),求數(shù)列的通項(xiàng)公式.
【答案】(1)①時(shí),數(shù)列具有性質(zhì);②時(shí),數(shù)列不具有性質(zhì).(2)證明見解析(3).
【解析】
(1)代入驗(yàn)證即可得.
(2)充分性: 由及數(shù)列具有性質(zhì)可得;必要性:數(shù)列為常數(shù)列,所以可證.
(3)數(shù)列具有性質(zhì),求出,由,對(duì)取值進(jìn)行證明排除,得到,猜想,用反證法證明猜想成立.
(1)①時(shí),數(shù)列具有性質(zhì).
②時(shí),數(shù)列不具有性質(zhì).
(2),
,等號(hào)成立,當(dāng)且僅當(dāng),
因?yàn)閿?shù)列具有性質(zhì),即,
所以數(shù)列為常數(shù)列.
必要性:因?yàn)閿?shù)列為常數(shù)列,所以,
成立,即數(shù)列具有性質(zhì).
(3)數(shù)列具有性質(zhì),,
,.
若,矛盾;
若則矛盾.
所以,
所以猜想.
證明如下:假設(shè)命題不成立,
設(shè)( ),
考慮數(shù)列,當(dāng)時(shí)具有性質(zhì),
此時(shí),
即或,矛盾,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,直線:,直線:.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于,兩點(diǎn),直線與曲線C交于,兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐中, 互相垂直, , 是線段上一動(dòng)點(diǎn),若直線與平面所成角的正切的最大值是,則三棱錐的外接球的表面積是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖;
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別
有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(Ⅱ)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
0.05 | 0.01 | |
k | 3.841 | 6.635 |
附
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)兩個(gè)極值點(diǎn)分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平行志愿投檔錄取模式是高考志愿的一種新方式,2008年教育部在6個(gè)省區(qū)實(shí)行平行志愿投檔錄取模式的試點(diǎn)改革.一年的實(shí)踐證叨,實(shí)行平行志愿投檔錄取模式,有效降低了考生志愿填報(bào)風(fēng)險(xiǎn).平行志愿是這樣規(guī)定:在同一批次設(shè)置幾個(gè)志愿,當(dāng)考生分?jǐn)?shù)達(dá)到這幾個(gè)學(xué)校提檔線時(shí),本批次的志愿依次檢索錄取.某考生根據(jù)對(duì)自己的高考分?jǐn)?shù)和對(duì)往年學(xué)校錄取情況分析,從報(bào)考指南中選擇了10所學(xué)校,作出如下表格:
學(xué)校 | ||||||||||
專業(yè) | 數(shù)學(xué)系 | 計(jì)算機(jī)系 | 物理系 | |||||||
錄取概率 | 0.5 | 0.5 | 0.6 | 0.9 | 0.5 | 0.7 | 0.8 | 0.7 | 0.8 | 0.9 |
(1)該考生從上表中的10所學(xué)校中選擇4所學(xué)校填報(bào),記為選擇的4所學(xué)校中報(bào)數(shù)學(xué)系專業(yè)的個(gè)數(shù),求的分布列及其期望;
(2)若該考生選擇了、、、這4個(gè)學(xué)校在同一批次填報(bào)志愿,填報(bào)志愿表如下,如果僅以該考生對(duì)自己分析的錄取概率為依據(jù),當(dāng)改變這4個(gè)志愿填報(bào)的順序時(shí),是否改變他本批次錄取的可能性?請(qǐng)說明理由.
志愿 | 學(xué)校 |
第一志愿 | |
第二志愿 | |
第三志愿 | |
第四志愿 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甘肅省是土地荒漠化較為嚴(yán)重的省份,一代代治沙人為了固沙、治沙,改善生態(tài)環(huán)境,不斷地進(jìn)行研究與實(shí)踐,實(shí)現(xiàn)了沙退人進(jìn).2019年,古浪縣八步沙林場(chǎng)“六老漢”三代人治沙群體作為優(yōu)秀代表,被中宣部授予“時(shí)代楷!狈Q號(hào).在治沙過程中為檢測(cè)某種固沙方法的效果,治沙人在某一實(shí)驗(yàn)沙丘的坡頂和坡腰各布設(shè)了50個(gè)風(fēng)蝕插釬,以測(cè)量風(fēng)蝕值(風(fēng)蝕值是測(cè)量固沙效果的指標(biāo)之一,數(shù)值越小表示該插釬處被風(fēng)吹走的沙層厚度越小,說明固沙效果越好,數(shù)值為0表示該插針處沒有被風(fēng)蝕)通過一段時(shí)間的觀測(cè),治沙人記錄了坡頂和坡腰全部插釬測(cè)得的風(fēng)蝕值(所測(cè)數(shù)據(jù)均不為整數(shù)),并繪制了相應(yīng)的頻率分布直方圖.
(Ⅰ)根據(jù)直方圖估計(jì)“坡腰處一個(gè)插釬風(fēng)蝕值小于30”的概率;
(Ⅱ)若一個(gè)插釬的風(fēng)蝕值小于30,則該數(shù)據(jù)要標(biāo)記“*”,否則不標(biāo)記.根據(jù)以上直方圖,完成列聯(lián)表:
標(biāo)記 | 不標(biāo)記 | 合計(jì) | |
坡腰 | |||
坡頂 | |||
合計(jì) |
并判斷是否有的把握認(rèn)為數(shù)據(jù)標(biāo)記“*”與沙丘上插釬所布設(shè)的位置有關(guān)?
(Ⅲ)坡頂和坡腰的平均風(fēng)蝕值分別為和,若,則可認(rèn)為此固沙方法在坡頂和坡腰的固沙效果存在差異,試根據(jù)直方圖計(jì)算和(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表),并判斷該固沙方法在坡頂和坡腰的固沙效果是否存在差異.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來,湖北某市醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重匱乏,全國各地紛紛馳援.某運(yùn)輸隊(duì)接到從武漢送往該市物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運(yùn)輸隊(duì)所花的成本最低為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的離心率為,點(diǎn)在橢圓C上,直線與橢圓C交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)直線,分別交y軸于M,N兩點(diǎn),問:x軸上是否存在點(diǎn)Q,使得?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com