18.某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期內(nèi)的圖象時,列表并填入部分數(shù)據(jù),如表:
(1)請將上表數(shù)據(jù)補充完整,填寫在答題卡相應(yīng)的位置,并求f(x)的解析式;
(2)將函數(shù)f(x)的圖象上每一點的縱坐標縮短到原來的$\frac{1}{2}$倍,橫坐標不變,得到函數(shù)g(x)的圖象.試求g(x)在區(qū)間[π,$\frac{5π}{2}$]上的最值.
ωx+φ 0 $\frac{π}{2}$ π $\frac{3π}{2}$ 2π
 x  2π   $\frac{13π}{2}$
 f(x) 0 4 -4 0

分析 (1)根據(jù)表中數(shù)據(jù)求出A、T以及ω和φ的值,寫出f(x)的解析式,再補充表中數(shù)據(jù);
(2)根據(jù)函數(shù)圖象變換寫出g(x)的解析式,求出它在區(qū)間[π,$\frac{5π}{2}$]上的最值即可.

解答 解:(1)根據(jù)表中數(shù)據(jù)得,A=4,
$\frac{3}{4}$T=$\frac{13π}{2}$-2π=$\frac{9π}{2}$,
所以T=6π=$\frac{2π}{ω}$,
解得ω=$\frac{1}{3}$,
所以$\frac{1}{3}$×$\frac{π}{2}$+φ=0,
解得φ=-$\frac{π}{6}$;
所以$f(x)=4sin(\frac{1}{3}x-\frac{π}{6})$,
補充表中數(shù)據(jù)為$\frac{π}{2}$,$\frac{7π}{2}$,5π和0;
(2)將函數(shù)f(x)的圖象上每一點的縱坐標縮短到原來的$\frac{1}{2}$倍,橫坐標不變,
得到函數(shù)g(x)的圖象,
所以$g(x)=2sin(\frac{1}{3}x-\frac{π}{6})$,
∵$π≤x≤\frac{5π}{2}$,
∴$\frac{π}{6}≤\frac{1}{3}x-\frac{π}{6}≤\frac{2π}{3}$,
∴$\frac{1}{2}≤sin(\frac{1}{3}x-\frac{π}{6})≤1$,
∴$1≤2sin(\frac{1}{3}x-\frac{π}{6})≤2$,
∴g(x)max=2,g(x)min=1.

點評 本題考查了三角函數(shù)f(x)=Asin(ωx+φ)的圖象與性質(zhì)的應(yīng)用問題,也考查了圖象的變換問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合A={x|x∈N|x>1},則( 。
A.∅∉AB.1∉AC.1∈AD.{1}⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”,若f(x)=4x-m2x+1+m2-5為定義域R上的“局部奇函數(shù)”,則實數(shù)m的取值范圍是1-$\sqrt{5}$<m≤2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.數(shù)列{an}中,a1=1,前n項和是Sn,Sn=2an-1,n∈N*
(1)求a2,a3,a4;
(2)求通項公式an;
(3)求證:SnSn+2<Sn+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且滿足sinA+$\sqrt{3}$cosA=2.
(1)求A的大;
(2)現(xiàn)給出三個條件①B=45°;②a=2;③c=$\sqrt{3}$b.試從中選出兩個可以確定△ABC的條件,寫出你的選擇并以此為依據(jù)求△ABC的面積.(注:只能寫出一個選定方案即可,選多種方案以第一種方案計分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓M過三點A(0,0),B(1,1),C(4,2),過點D(-1,4)作圓M的兩條切線,兩切點分別為E,F(xiàn),
(I)  求圓M的方程.
(II) 求切線DE,DF方程
( III)求直線EF的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=x+$\frac{a}{x}$+3,x∈N*,在x=5時取到最小值,則實數(shù)a的所有取值的集合為[20,30].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,tan2$\frac{A}{2}$+tan2$\frac{B}{2}$+tan2$\frac{C}{2}$的最小值是1.

查看答案和解析>>

同步練習(xí)冊答案