解答題

(文科做)已知函數(shù)處取得極值,

(1)

表示

(2)

設(shè)函數(shù),如果在閉區(qū)間(0,1)上存在極小值,求實(shí)數(shù)a的取值范圍.

答案:
解析:

(1)

解:………………2分

………………3分

(2)

解:由已知可得

………………5分

>0,則當(dāng)時(shí),>0;當(dāng)時(shí),<0

∴當(dāng)時(shí),有極小值,∴………………8分

〈0,則當(dāng)時(shí),>0;當(dāng)時(shí),<0

∴當(dāng)時(shí),有極小值,在閉區(qū)間(0,1)上存在極小值,

,∴………………11分

∴當(dāng)時(shí),在閉區(qū)間(0,1)上存在極小值.……12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:云南省昆明一中2007屆高三年級(jí)上學(xué)期第四次月考 數(shù)學(xué)試題 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

(理科14分文科12分)已知點(diǎn)F(1,0),點(diǎn)P在y軸上運(yùn)動(dòng),點(diǎn)M在x軸上運(yùn)動(dòng).設(shè)P(0,b),M(a,0),且,動(dòng)點(diǎn)N滿足

(1)

求點(diǎn)N的軌跡C的方程

(2)

F′為曲線C的準(zhǔn)線與x軸的交點(diǎn),過點(diǎn)F′的直線l交曲線C于不同的兩點(diǎn)A、B,若D為AB中點(diǎn),在x軸上存在一點(diǎn)E,使,求的取值范圍(O為坐標(biāo)原點(diǎn))

(3)

(理科做)Q為直線x=-1上任一點(diǎn),過Q點(diǎn)作曲線C的兩條切線l1l2,求證l1l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:崇信縣第一中學(xué)2007屆高三第三次月考、數(shù)學(xué)試卷(Ⅰ) 題型:038

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

已知數(shù)列,其中是首項(xiàng)為1,公差為1的等差數(shù)列;是公差為的等差數(shù)列;是公差為的等差數(shù)列().

(1)

,求;

(2)

試寫出關(guān)于的關(guān)系式,并求的取值范圍;

(3)

解:續(xù)寫已知數(shù)列,使得是公差為的等差數(shù)列,…,依次類推,把已知數(shù)列推廣為無窮數(shù)列.以(2)作為特例研究寫出關(guān)于d的關(guān)系式并化簡(jiǎn).(理)(注意:文科考生只做(1)(2),理科考生全做)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:崇信縣第一中學(xué)2007屆高三第三次月考、數(shù)學(xué)試卷(Ⅰ) 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

已知定義在(—1,1)上的函數(shù)滿足,且對(duì)時(shí),有

(1)

判斷在(—1,1)上的奇偶性,并加以證明;

(2)

,求數(shù)列{}的通項(xiàng)公式;

(3)

設(shè)為數(shù)列{}的前項(xiàng)和,問是否存在正整數(shù),使得對(duì)任意的,有成立?若存在,求出的最小值,若不存在,則說明理由.(注意:文科考生只做(1)(2),理科考生全做)

查看答案和解析>>

同步練習(xí)冊(cè)答案