有10臺(tái)型號(hào)相同的聯(lián)合收割機(jī),收割一片土地上的莊稼.現(xiàn)有兩種工作方案:第一種方案,同時(shí)投入并連續(xù)工作至收割完畢;第二種方案,每隔相同時(shí)間先后投入,每一臺(tái)投入后都連續(xù)工作至收割完畢.若采用第一種方案需要24小時(shí),而采用第二種方案時(shí),第一臺(tái)投入工作的時(shí)間恰好為最后一臺(tái)投入工作時(shí)間的5倍,則采用第二種方案時(shí)第一臺(tái)收割機(jī)投入工作的時(shí)間為    小時(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)等于
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

、出租車(chē)幾何學(xué)是由十九世紀(jì)的赫爾曼-閔可夫斯基所創(chuàng)立的。在出租車(chē)幾何學(xué)中,點(diǎn)還是形如的有序?qū)崝?shù)對(duì),直線還是滿足的所有組成的圖形,角度大小的定義也和原來(lái)一樣。直角坐標(biāo)系內(nèi)任意兩點(diǎn)定義它們之間的一種“距離”:,請(qǐng)解決以下問(wèn)題:
1、(理)求線段上一點(diǎn)的距離到原點(diǎn)的“距離”;
(文)求點(diǎn)、的“距離”
2、(理)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,
求“圓周”上的所有點(diǎn)到點(diǎn) 的“距離”均為 的“圓”方程;
(文)求線段上一點(diǎn)的距離到原點(diǎn)的“距離”;
3、(理)點(diǎn)、,寫(xiě)出線段的垂直平分線的軌跡方程并畫(huà)出大致圖像.
(文)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,點(diǎn)、,,求經(jīng)過(guò)這三個(gè)點(diǎn)確定的一個(gè)“圓”的方程,并畫(huà)出大致圖像;
(說(shuō)明所給圖形小正方形的單位是1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)唯一的零點(diǎn)在區(qū)間內(nèi),那么下面命題錯(cuò)誤的(   )
A.函數(shù)在區(qū)間內(nèi)有零點(diǎn)B.函數(shù)在區(qū)間內(nèi)無(wú)零點(diǎn)
C.函數(shù)在區(qū)間內(nèi)有零點(diǎn)D.函數(shù)在區(qū)間內(nèi)不一定有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
1)討論并證明函數(shù))在區(qū)間的單調(diào)性;
2)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知,設(shè)命題函數(shù)在R上單調(diào)遞減,不等式的解集為R,若中有且只有一個(gè)命題為真命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,滿足,且,則 等于(   )
A.0B.2C.4 D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知兩個(gè)正數(shù),可按規(guī)則擴(kuò)充為一個(gè)新數(shù),在三個(gè)數(shù)中取兩個(gè)較大的數(shù),按上述規(guī)則擴(kuò)充得到一個(gè)新數(shù),依次下去,將每擴(kuò)充一次得到一個(gè)新數(shù)稱(chēng)為一次操作.
(1)若,按上述規(guī)則操作三次,擴(kuò)充所得的數(shù)是__________;
(2)若,經(jīng)過(guò)6次操作后擴(kuò)充所得的數(shù)為為正整數(shù)),則的值分別為_(kāi)___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是定義在上的偶函數(shù),且,若當(dāng)時(shí),,則              .

查看答案和解析>>

同步練習(xí)冊(cè)答案