分析 設(shè)兩個(gè)交點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),利用點(diǎn)差法求得直線的斜率,進(jìn)一步求出直線方程,然后驗(yàn)證直線與曲線方程由兩個(gè)交點(diǎn)即可.
解答 解:設(shè)兩個(gè)交點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2)
所以x12-4y12=4,x22-4y12=4,兩式相減得(x1+x2)(x1-x2)=4(y1+y2)(y1-y2),
又$\frac{{x}_{1}+{x}_{2}}{2}$=3,$\frac{{y}_{1}+{y}_{2}}{2}$=-1,∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3}{4}$,
所以直線的方程為y+1=-$\frac{3}{4}$(x-3),即3x+4y-5=0.
由點(diǎn)A(3,-1)在雙曲線內(nèi)部,直線方程滿足題意.
∴MN所在直線的方程是3x+4y-5=0.
故答案為:3x+4y-5=0.
點(diǎn)評(píng) 本題主要考查了直線與圓錐曲線的綜合問題.解題的關(guān)鍵是充分運(yùn)用數(shù)形結(jié)合的數(shù)學(xué)思想、方程的數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想來解決較為復(fù)雜的綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2+1,x∈[-2,2) | B. | f(x)=|3x-1|-|3x+1| | ||
C. | f(x)=-x2+1,x∈(-2,+∞) | D. | f(x)=x4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∉[1,2],x2-4x+6≥0 | B. | ?x0∈[1,2],x02-4x0+6≥0 | ||
C. | ?x∉[1,2],x2-4x+6>0 | D. | ?x∈[1,2],x2-4x+6≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com