7.下列函數(shù)中是偶函數(shù)的是( 。
A.f(x)=x2+1,x∈[-2,2)B.f(x)=|3x-1|-|3x+1|
C.f(x)=-x2+1,x∈(-2,+∞)D.f(x)=x4

分析 由偶函數(shù)的定義,首先判斷定義域是否關(guān)于原點對稱,再檢驗f(-x)是否等于f(x),即可得到結(jié)論.

解答 解:對于A.定義域為[-2,2)不關(guān)于原點對稱,不具奇偶性,不滿足條件;
對于B.f(-x)=|3x+1|-|3x-1|=-f(x),不滿足偶函數(shù)條件;
對于C.定義域為(-2,+∞)不關(guān)于原點對稱,不具奇偶性,不滿足條件;
對于D.f(x)=x4的定義域為R,滿足f(-x)═f(x),則為偶函數(shù),滿足條件.
故選D.

點評 本題考查函數(shù)的奇偶性的判斷,注意運用定義判斷是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx+bx-c,f(x)在點(1,f(1))處的切線方程為x+y+4=0.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)在定義域內(nèi)恒有f(x)≥2lnx+kx成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知F1(-4,0),F(xiàn)2(4,0)為橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的兩個焦點,P在橢圓上,且△PF1F2的面積為$3\sqrt{3}$,則cos∠F1PF2=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$a={(\frac{1}{3})}^{-3},b={(0.3)}^{2},c={log}_{\frac{1}{2}}3$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行下面的程度框圖,若輸出的值為-5,則判斷框中可以填( 。
A.z>10B.z≤10C.z>20D.z≤20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.閱讀下列程序,并回答問題.

(1)中若輸入1,2,則輸出的結(jié)果為1,-2,-1; 
(2)中若輸入3,2,5,則輸出的結(jié)果為C=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x∈R|x>$\sqrt{π}$),π為圓周率,則( 。
A.2∈AB.2∉AC.2>AD.2?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)P,Q分別為橢圓$\frac{x^2}{10}+{y^2}=1$和圓x2+(y-6)2=2上的點,則P,Q兩點間的最大距離是( 。
A.$7+\sqrt{2}$B.$6\sqrt{2}$C.$5\sqrt{2}$D.$\sqrt{46}+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知曲線x2-4y2=4,過點A(3,-1)且被點A平分的弦MN所在的直線方程為3x+4y-5=0.

查看答案和解析>>

同步練習(xí)冊答案