A. | a>1 | B. | -1<a<0 | C. | a>1或-1<a<0 | D. | -1<a<1 |
分析 結(jié)合已知的函數(shù)解析式和對數(shù)函數(shù)的圖象和性質(zhì),分別求出不同情況下實數(shù)a的取值范圍,綜合討論結(jié)果,可得答案.
解答 解:若a>0,則-a<0,
不等式f(a)-2f(-a)>0可化為:log2a-2${log}_{\frac{1}{2}}$a=3log2a>0,
解得:a∈(1,+∞);
若a<0,則-a>0,
不等式f(a)-2f(-a)>0可化為:${log}_{\frac{1}{2}}$(-a)-2log2(-a)=3${log}_{\frac{1}{2}}$(-a)>0,
解得:a∈(-1,0);
綜上所述,a∈(-1,0)∪(1,+∞),
故選:C.
點評 本題考查的知識點是分段函數(shù)的應(yīng)用,分類討論思想,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 減函數(shù) | |
B. | 增函數(shù) | |
C. | 在(-2,-1)內(nèi)為增函數(shù).在(-1,0)內(nèi)為減函數(shù) | |
D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在圓心 | B. | 在圓上 | C. | 在圓內(nèi) | D. | 在圓外 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com