設(shè)f:A→B是從集合A到B的映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(kx,y+b),若B中元素(6,2)在映射f下的原像是(3,1),則A中元素(5,8)在f下的像為
 
分析:利用映射概念,結(jié)合B中元素(6,2)在映射f下的原像是(3,1)求出k和b的值,則A中元素(5,8)在f下的像可求.
解答:解:由題意,f:(x,y)→(kx,y+b),B中元素(6,2)在映射f下的原像是(3,1),
3k=6
1+b=2
,解得
k=2
b=1

∴A中元素(5,8)在f下的像為(2×5,8+1)=(10,9).
故答案為:(10,9).
點(diǎn)評(píng):本題考查了映射的概念,解答的關(guān)鍵是對(duì)題意的理解,是基礎(chǔ)的計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f:A→B是從集合A到B的映射,A=B=(x,y)|x∈R,y∈R,f:(x,y)→(kx,y+b),若B中元素(6,2)在映射f下與A中的元素(3,1)對(duì)應(yīng),則k=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f:A→B是從集合A到集合B的映射,則下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f:A→B是從集合A到集合B的映射,其中A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x+y,x-y),那么B中元素(1,3)的原像是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f:A→B是從集合A到B的映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(kx,y+b),若B中元素(6,2)在映射f下的原象是(3,1),則A中元素(1006,2012)在f下的象為
(2012,2013)
(2012,2013)

查看答案和解析>>

同步練習(xí)冊(cè)答案