設(shè)f:A→B是從集合A到B的映射,A=B=(x,y)|x∈R,y∈R,f:(x,y)→(kx,y+b),若B中元素(6,2)在映射f下與A中的元素(3,1)對(duì)應(yīng),則k=
 
,b=
 
分析:由已知中f:A→B是從集合A到B的映射,A=B=(x,y)|x∈R,y∈R,f:(x,y)→(kx,y+b),若B中元素(6,2)在映射f下與A中的元素(3,1)對(duì)應(yīng),我們可以構(gòu)造一個(gè)關(guān)于k,b的方程組,解方程組即可得到答案.
解答:解:∵f:(x,y)→(kx,y+b),
B中元素(6,2)在映射f下與A中的元素(3,1)對(duì)應(yīng),
3k=6
1+b=2

解得k=2,b=1
故答案為:2,1
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是映射,其中根據(jù)已知中映射反映的對(duì)應(yīng)關(guān)系,構(gòu)造關(guān)于k,b的方程組,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f:A→B是從集合A到集合B的映射,則下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f:A→B是從集合A到集合B的映射,其中A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x+y,x-y),那么B中元素(1,3)的原像是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f:A→B是從集合A到B的映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(kx,y+b),若B中元素(6,2)在映射f下的原象是(3,1),則A中元素(1006,2012)在f下的象為
(2012,2013)
(2012,2013)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f:A→B是從集合A到B的映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(kx,y+b),若B中元素(6,2)在映射f下的原像是(3,1),則A中元素(5,8)在f下的像為
 

查看答案和解析>>

同步練習(xí)冊答案