13.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2$\sqrt{3}$,∠BAC=30°,且$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,則$\overrightarrow{AC}$•$\overrightarrow{CD}$等于(  )
A.18B.9C.-8D.-6

分析 根據(jù)向量加減的幾何意義和向量的數(shù)量積的運(yùn)算即可求出.

解答 解:∵$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,
∴$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$,
∴$\overrightarrow{AC}$•$\overrightarrow{CD}$=$\overrightarrow{AC}$($\overrightarrow{AD}$-$\overrightarrow{AC}$)=$\overrightarrow{AC}$($\frac{2}{3}$$\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\frac{2}{3}$$\overrightarrow{AC}$•$\overrightarrow{AB}$-${\overrightarrow{AC}}^{2}$=$\frac{2}{3}$|$\overrightarrow{AC}$|•|$\overrightarrow{AB}$|cos30°-${\overrightarrow{AC}}^{2}$=$\frac{2}{3}$×2$\sqrt{3}$×3×$\frac{3}{2}$-12=6-12=-6,
故選:D.

點(diǎn)評(píng) 本題主要考查了向量的基本運(yùn)算在三角形中的應(yīng)用,屬于基礎(chǔ)試題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)為A,拋物線C:y2=8ax的焦點(diǎn)為F,若在E的漸近線上存在點(diǎn)P使得PA⊥FP,則E的離心率的取值范圍是(  )
A.(1,2)B.(1,$\frac{3\sqrt{2}}{4}$]C.(2,+∞)D.[$\frac{3\sqrt{2}}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=mlnx+nx在點(diǎn)(1.f(1))處的切線與直線x+y-2=0平行,且f(1)=-2,其中m,n∈R.
(Ⅰ)求m,n的值,并求出函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)$g(x)=\frac{1}{t}(-{x^2}+2x)$,對(duì)于正實(shí)數(shù)t,若?x0∈[1,e],使得f(x0)+x0≥g(x0)成立,求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖1,在邊長(zhǎng)為$2\sqrt{3}$的正方形ABCD中,E、O分別為 AD、BC的中點(diǎn),沿 EO將矩形ABOE折起使得∠BOC=120°,如圖2所示,點(diǎn)G 在BC上,BG=2GC,M、N分別為AB、EG中點(diǎn).
(Ⅰ)求證:MN∥平面OBC;
(Ⅱ)求二面角 G-ME-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{{(\frac{1}{2})}^{x},x<0}\end{array}\right.$,若方程f(f(x))-$\frac{3}{2}$=0在實(shí)數(shù)集范圍內(nèi)無(wú)解,則實(shí)數(shù)k的取值范圍是(  )
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{3}$)C.[0,+∞)D.(-$\frac{1}{2}$,-$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若a>0,b>0,且2a+b=1,且$2\sqrt{ab}-4{a^2}-{b^2}$的最大值是$\frac{{\sqrt{2}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=x{e^x}-a(\frac{1}{2}{x^2}+x)(a∈R)$.
(Ⅰ)若a=0,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若?x∈(-2,0),f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)a>0時(shí),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)集合A={x|x2-x-2≥0},B={x|0<x<3},則A∩B( 。
A.(0,2]B.[-1,3)C.[2,3)D.[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.過(guò)拋物線C:y2=4x的焦點(diǎn)F作直線l將拋物線C于A、B,若|AF|=4|BF|,則直線l的斜率是$±\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案