【題目】在直三棱柱中,,,,點(diǎn)是的中點(diǎn).
(1)求異面直線,所成角的余弦值;
(2)求直線與平面所成角的正弦值;
(3)求異面直線與的距離.
【答案】(1).(2).(3)
【解析】
根據(jù)已知條件以,,為,,軸建立按直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo),(1)由各個點(diǎn)的坐標(biāo)寫出相應(yīng)向量,,代入向量夾角公式,即可求出異面直線,所成角的余弦值;
(2)先設(shè)平面的法向量為并求出法向量為,再利用直線與平面所成角為的正弦值即可求出;
(3) 連接交于點(diǎn),連接,可得,即平面,所以異面直線與的距離可轉(zhuǎn)化為點(diǎn)到平面的距離,根據(jù)點(diǎn)到平面的距離公式即可求出距離.
解:以,,為,,軸建立按直角坐標(biāo)系,
則各點(diǎn)的坐標(biāo)為,,,.如圖:
(1)所以,,
所以.
故異面直線和所成角的余弦值為.
(2),,設(shè)平面的法向量為.
則即,取,得.
設(shè)直線與平面所成角為,則.
所以直線與平面所成角的正弦值為.
(3)連接交于點(diǎn),連接,易得,
所以平面,故點(diǎn)到平面的距離即為所求異面直線距離.
記點(diǎn)到平面的距離為,則.
所以異面直線與的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(,且)是定義域?yàn)?/span>R的奇函數(shù).
(1)求t的值;
(2)若,求使不等式對一切恒成立的實(shí)數(shù)k的取值范圍;
(3)若函數(shù)的圖象過點(diǎn),是否存在正數(shù)m(),使函數(shù)在上的最大值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廣州亞運(yùn)會紀(jì)念章委托某專營店銷售,每枚進(jìn)價5元,同時每銷售一枚這種紀(jì)念章需向廣州亞組委交特許經(jīng)營管理費(fèi)2元,預(yù)計(jì)這種紀(jì)念章以每枚20元的價格銷售時該店一年可銷售2000枚,經(jīng)過市場調(diào)研發(fā)現(xiàn)每枚紀(jì)念章的銷售價格在每枚20元的基礎(chǔ)上每減少一元則增加銷售400枚,而每增加一元則減少銷售100枚,現(xiàn)設(shè)每枚紀(jì)念章的銷售價格為元.()
(1)寫出該專營店一年內(nèi)銷售這種紀(jì)念章所獲利潤(元)與每枚紀(jì)念章的銷售價格(元)的函數(shù)關(guān)系式(并寫出這個函數(shù)的定義域);
(2)當(dāng)每枚紀(jì)念章銷售價格為多少元時,該特許專營店一年內(nèi)利潤(元)最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計(jì),某5家鮮花店今年4月的銷售額和利潤額資料如下表:
鮮花店名稱 | A | B | C | D | E |
銷售額x(千元) | 3 | 5 | 6 | 7 | 9 |
利潤額y(千元) | 2 | 3 | 3 | 4 | 5 |
(1)用最小二乘法計(jì)算利潤額y關(guān)于銷售額x的回歸直線方程=x+;
(2)如果某家鮮花店的銷售額為8千元時,利用(1)的結(jié)論估計(jì)這家鮮花店的利潤額是多少.
參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)值公式分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,橢圓上任意一點(diǎn)到橢圓兩個焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線 與橢圓交于兩點(diǎn),點(diǎn)(0,1),且=,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線不與坐標(biāo)軸垂直,且與拋物線有且只有一個公共點(diǎn).
(1)當(dāng)點(diǎn)的坐標(biāo)為時,求直線的方程;
(2)設(shè)直線與軸的交點(diǎn)為,過點(diǎn)且與直線垂直的直線交拋物線于,兩點(diǎn).當(dāng)時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中常數(shù)
(1)當(dāng)時,討論的單調(diào)性
(2)當(dāng)時,是否存在整數(shù)使得關(guān)于的不等式在區(qū)間內(nèi)有解?若存在,求出整數(shù)的最小值;若不存在,請說明理由.
參考數(shù)據(jù):,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①是反映某條公交線路收支差額(即營運(yùn)所得票價收入與付出成本的差)與乘客量之間關(guān)系的圖像.由于目前該條公交線路虧損,公司有關(guān)人員提出了兩種調(diào)整的建議,如圖②③所示:
給出下列說法:(1)圖②的建議:提高成本,并提高票價;(2)圖②的建議:降低成本,并保持票價不變;(3)圖③的建議:提高票價,并保持成本不變;(4)圖③的建議:提高票價,并降低成本.其中所有說法正確的序號是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com