10.設(shè)f(x)=exlnx-aex(a∈R),若f(x)在(0,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

分析 先求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為a≤lnx+$\frac{1}{x}$或a≥lnx+$\frac{1}{x}$,令g(x)=lnx+$\frac{1}{x}$,通過求導(dǎo)得到g(x)的單調(diào)性,求出g(x)的最小值,從而求出a的范圍.

解答 解:f′(x)=ex(lnx+$\frac{1}{x}$-a),(x>0),
若函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)函數(shù),
則ex(lnx+$\frac{1}{x}$-a)≥0或ex(lnx+$\frac{1}{x}$-a)≤0,
即a≤lnx+$\frac{1}{x}$或a≥lnx+$\frac{1}{x}$,
令g(x)=lnx+$\frac{1}{x}$,則g′(x)=$\frac{x-1}{{x}^{2}}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
∴g(x)在(0,1)遞減,在(1,+∞)遞增,
∴g(x)最小值=g(1)=1,無最大值;
故a≤1,函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,曲線的切線方程問題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且asinA+csinC-$\sqrt{2}$asinC=bsinB.則∠B=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{AB}$,$\overrightarrow{AD}$=$\frac{3}{2}$$\overrightarrow{AB}$,試用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OC}$和$\overrightarrow{OD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.化簡$\sqrt{2-2sinθ-co{s}^{2}θ}$的結(jié)果為1-sinθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.等差數(shù)列98,95,92,…,101-3n,…,當(dāng)n為何值時(shí),前n項(xiàng)和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求當(dāng)k為何值時(shí),關(guān)于x的方程$\frac{4k-3x}{k+2}$=2x的解為:
(1)正數(shù);
(2)負(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知⊙C:(x+2)2+y2=1,P(x,y)為⊙C上任意一點(diǎn),求以下各式的值域.
(1)$\frac{y-2}{x-1}$;
(2)x-2y;
(3)x2-4x+y2-6y+15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,a2=4,a1a4=32,數(shù)列{bn}滿足:對(duì)任意的正整數(shù)n,都有a1b1+a2b2+…+anbn=(n-1)•2n+1+2.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)若集合M={n|$\frac{_{n}_{n+1}}{{a}_{n}}$≥λ,n∈N*}中元素的個(gè)數(shù)為4,試求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知定義域在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),在(0,+∞)上是增函數(shù)且f(x)<0,則F(x)=$\frac{1}{f(x)}$在 (-∞,0)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案