解:(Ⅰ)定義域?yàn)閧x|x>-1},
(1分)
①當(dāng)a=0時(shí),∵
,
∴f(x)的單調(diào)遞增區(qū)間為(-1,+∞)(2分)
②當(dāng)a<0時(shí),
∵
∴f(x)的單調(diào)遞增區(qū)間為(-1,+∞)(3分)
③當(dāng)a>0時(shí),由f′(x)>0,則
,
所以f(x)的單調(diào)遞增區(qū)間為
,
由f′(x)<0,則
,
所以f(x)的單調(diào)遞減區(qū)間為
(4分)
(Ⅱ)當(dāng)a=1時(shí),f(x)=ln(x+1)-x,
由(Ⅰ)可知f(x)在(-1,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,
所以
(5分)
由表可知f(x)的最大值為f(0)=0(6分)
(Ⅲ)由(Ⅱ)可知f(x)=ln(x+1)-x≤0(*)
兩邊取對(duì)數(shù)可知
即證
又
由(*)式可知當(dāng)x≠0時(shí),ln(1+x)<x(9分)
∴
∴
=
(12分)
∴原不等式得證
分析:解:(1)先確定定義域,再用導(dǎo)數(shù)法求單調(diào)區(qū)間;要注意a的討論,
(2)當(dāng)a=1時(shí),f(x)=ln(x+1)-x,由(1)可知f(x)在(-1,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,從而求得其最大值.
(3)對(duì)
兩邊取對(duì)數(shù),將問(wèn)題轉(zhuǎn)化為證明
,由(x)=ln(x+1)-x≤0得證.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)法求單調(diào)區(qū)間,求函數(shù)最值,同時(shí)提醒學(xué)生在綜合題中已證結(jié)論可以用到下一問(wèn)題去解決問(wèn)題.