(本小題滿分14分)
已知函數(shù).
(1)求在[0,1]上的極值;
(2)若對任意,不等式成立,求實數(shù)的取值范圍;
(3)若關(guān)于的方程在[0,1]上恰有兩個不同的實根,求實數(shù)的取值范圍.
(1) 為函數(shù)在[0,1]上的極大值
(2) 或
(3)
【解析】(1)求導(dǎo),利用導(dǎo)數(shù)研究其單調(diào)區(qū)間和極值。導(dǎo)數(shù)等于零的點,若導(dǎo)數(shù)值滿足左正右負那么此點處取極大值,若是左負右正,此點處取極小值。
(2)解本小題的關(guān)鍵是先去絕對值把不等式轉(zhuǎn)化為或,然后再構(gòu)造函數(shù),,利用導(dǎo)數(shù)分別求h(x)的最大值,和g(x)的最小值即可。
解:(1),
令,得或(舍去).當(dāng)時, ,單調(diào)遞增;
當(dāng)時,單調(diào)遞減.為函數(shù)在[0,1]上的極大值. --4分
(2)由得
或,① -------------6分
設(shè),,
,
,
與都在上單調(diào)遞增,要使不等式①成立,
當(dāng)且僅當(dāng)或,即或. ---------------9分
(3)由.
令,則,
當(dāng)時,,于是在上遞增;
當(dāng)時,,于是在上遞減.
而,, ---------------11分
即在[0,1]恰有兩個不同實根等價于
,----------13分
. --14分
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com