如圖,OA是⊙O的半徑,以OA為直徑的⊙C與⊙O的弦AB相交于點D,求證:D是AB的中點.

答案:
解析:

  證明:連結(jié)OD、BE.

  因為∠ADO=∠ABE=90°,

  所以OD和BE平行.

  又因為O是AE的中點,

  所以D是AB的中點.

  分析:AO和AE分別是⊙C和⊙O的直徑,連結(jié)OD和BE,構(gòu)造出直角.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直角三角形OAB的直角頂點O是空間坐標系O-xyz的原點,點A在Ox軸正半軸上,|OA|=1;點B在Oz軸正半軸上,|OB|=2.我們稱△OAB繞Oz軸逆時針旋轉(zhuǎn)
π
2
后得到的旋轉(zhuǎn)體為四分之一圓錐體.以下關(guān)于此四分之一圓錐體的三視圖的表述錯誤的是( 。
A、該四分之一圓錐體主視圖和左視圖的圖形是全等的直角三角形
B、該四分之一圓錐體俯視圖的圖形是一個圓心角為
π
2
的扇形
C、該四分之一圓錐體主視圖、左視圖和俯視圖的圖形都是扇形
D、該四分之一圓錐體主視圖的圖形面積大于俯視圖的圖形面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•九江一模)已知點G是△ABC的外心,
GA
,
GB
 ,
GC
是三個單位向量,且滿足2
GA
+
AB
+
AC
=
0
,|
GA
|=|
AB
|.如圖所示,△ABC的頂點B、C分別在x軸和y軸的非負半軸上移動,O是坐標原點,則|
OA
|的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•嘉定區(qū)三模)如圖,設A、B是單位圓O上的動點,且A、B分別在第一、二象限.C是圓O與x軸正半軸的交點,△AOB為等邊三角形.記以Ox軸正半軸為始邊,射線OA為終邊的角為θ.
(1)若點A的坐標為(
3
5
,
4
5
),求
sin2θ+sin2θ
cos2θ+cos2θ
的值;
(2)設f(θ)=|BC|2,求函數(shù)f(θ)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖,直角三角形OAB的直角頂點O是空間坐標系O-xyz的原點,點A在Ox軸正半軸上,|OA|=1;點B在Oz軸正半軸上,|OB|=2.我們稱△OAB繞Oz軸逆時針旋轉(zhuǎn)數(shù)學公式后得到的旋轉(zhuǎn)體為四分之一圓錐體.以下關(guān)于此四分之一圓錐體的三視圖的表述錯誤的是


  1. A.
    該四分之一圓錐體主視圖和左視圖的圖形是全等的直角三角形
  2. B.
    該四分之一圓錐體俯視圖的圖形是一個圓心角為數(shù)學公式的扇形
  3. C.
    該四分之一圓錐體主視圖、左視圖和俯視圖的圖形都是扇形
  4. D.
    該四分之一圓錐體主視圖的圖形面積大于俯視圖的圖形面積

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市普陀區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:選擇題

如圖,直角三角形OAB的直角頂點O是空間坐標系O-xyz的原點,點A在Ox軸正半軸上,|OA|=1;點B在Oz軸正半軸上,|OB|=2.我們稱△OAB繞Oz軸逆時針旋轉(zhuǎn)后得到的旋轉(zhuǎn)體為四分之一圓錐體.以下關(guān)于此四分之一圓錐體的三視圖的表述錯誤的是( )

A.該四分之一圓錐體主視圖和左視圖的圖形是全等的直角三角形
B.該四分之一圓錐體俯視圖的圖形是一個圓心角為的扇形
C.該四分之一圓錐體主視圖、左視圖和俯視圖的圖形都是扇形
D.該四分之一圓錐體主視圖的圖形面積大于俯視圖的圖形面積

查看答案和解析>>

同步練習冊答案