分析 通過設(shè)P(x,y),利用中點(diǎn)坐標(biāo)公式可知A(2x,2y),進(jìn)而代入橢圓方程計(jì)算即得結(jié)論.
解答 解:設(shè)P(x,y),則A(2x,2y),
∵點(diǎn)A(2x,2y)是橢圓$\frac{{x}^{2}}{2}$+y2=1上的點(diǎn),
∴$\frac{(2x)^{2}}{2}$+(2y)2=1,
整理得:2x2+4y2=1,
即線段OA的中點(diǎn)P的軌跡方程為2x2+4y2=1.
點(diǎn)評(píng) 本題考查橢圓的簡單性質(zhì),涉及中點(diǎn)坐標(biāo)公式等基礎(chǔ)知識(shí),注意解題方法的積累,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 3或4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f($\frac{π}{3}$)>$\sqrt{2}$f($\frac{π}{4}$) | B. | f($\frac{π}{3}$)>2cos1•f(1) | C. | 2cos1•f(1)>$\sqrt{2}$f($\frac{π}{4}$) | D. | $\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\underset{lim}{n→∞}\frac{2•4•6…(2n)}{3•6•9…(3n)}$=0 | B. | $\underset{lim}{n→∞}\frac{1}{n}$•sin$\frac{nπ}{3}$=0 | ||
C. | $\underset{lim}{n→∞}$(1-$\frac{1}{2}$)(1-$\frac{1}{3}$)…(1-$\frac{1}{n}$)=0 | D. | $\underset{lim}{n→∞}$$\frac{{3}^{n}{-2}^{n}}{{3}^{n}{+2}^{n}}$=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com