設(shè)aR試比較1a的大。

 

答案:
解析:

    當(dāng)a=0時(shí),

    當(dāng)a<1時(shí),

    當(dāng)a>1a≠0時(shí),

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
3
x+
1
2
,h(x)=
x

(Ⅰ)設(shè)函數(shù)F(x)=f(x)-h(x),求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè)a∈R,解關(guān)于x的方程㏒4[
3
2
f(x-1)-
3
4
]=log2h(a-x)-log2h(4-x);
(Ⅲ)試比較f(100)h(100)-
100
k=1
h(k)
1
6
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax4+bx3+cx2+dx+e(a,b,c,d,∈R)是定義在R上的奇函數(shù),且f(x)在x=
2
處取得極小值-
4
2
3
.設(shè)f′(x)表示f(x)的導(dǎo)函數(shù),定義數(shù)列{an}滿足:an=f′(
n
)+2(n∈N*)).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an
(Ⅱ)對(duì)任意m,n∈N*,若m≤n,證明:1+
m
an
≤(1+
1
an
m<3;
(Ⅲ)(理科)試比較(1+
1
an
m+1與(1+
1
an+1
m+2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,f(x)=
a•2x+a-2
2x+1
(x∈R),
(1)確定a的值,使f(x)為奇函數(shù).
(2)當(dāng)f(x)為奇函數(shù)時(shí),對(duì)于給定的正實(shí)數(shù)k,解不等式 f-1(x)>log2
1+x
k

(3)設(shè)g(n)=
n
n+1
(n∈N).當(dāng)f(x)是奇函數(shù)時(shí),試比較f(n)與g(n)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

設(shè)aR,試比較1a的大。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案