【題目】在數(shù)列中,若是正整數(shù),且,,則稱為“D-數(shù)列”.
(1) 舉出一個前五項均不為零的“D-數(shù)列”(只要求依次寫出該數(shù)列的前五項);
(2) 若“D-數(shù)列”中,,,數(shù)列滿足,,寫出數(shù)列的通項公式,并分別判斷當時,與的極限是否存在,如果存在,求出其極限值(若不存在不需要交代理由);
(3) 證明: 設“D-數(shù)列”中的最大項為,證明: 或.
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的通項公式為(, ),數(shù)列定義如下:對于正整數(shù), 是使得不等式成立的所有中的最小值.
(1)若, ,求;
(2)若, ,求數(shù)列的前項和公式;
(3)是否存在和,使得 ?如果存在,求和的取值范圍;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖:在直角坐標系中,設橢圓的左右兩個焦點分別為、.過右焦點與軸垂直的直線與橢圓C相交,其中一個交點為.
(1)求橢圓C的方程;
(2)設橢圓C的一個頂點為,求點M到直線的距離;
(3)過中點的直線交橢圓于P、Q兩點,求長的最大值以及相應的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設關于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數(shù)
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對于點、直線,我們稱為點到直線的方向距離.
(1)設橢圓上的任意一點到直線,的方向距離分別為、,求的取值范圍.
(2)設點、到直線的方向距離分別為、,試問是否存在實數(shù),對任意的都有成立?若存在,求出的值;不存在,說明理由.
(3)已知直線和橢圓,設橢圓的兩個焦點,到直線的方向距離分別為、滿足,且直線與軸的交點為、與軸的交點為,試比較的長與的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是拋物線:的焦點,直線與拋物線相切于點,連接交拋物線于另一點,過點作的垂線交拋物線于另一點.
(1)若,求直線的方程;
(2)求三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合是集合的子集,對于,定義,給出下列三個結論:①存在的兩個不同子集,使得任意都滿足且;②任取的兩個不同子集,對任意都有;③任取的兩個不同子集,對任意都有;其中,所有正確結論的序號是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,已知點M,N的極坐標分別為,直線l的方程為.
(1)求以線段MN為直徑的圓C的極坐標方程;
(2)求直線l被(1)中的圓C所截得的弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com