【題目】在數(shù)列中,若是正整數(shù),且,,則稱D-數(shù)列”.

(1) 舉出一個前五項均不為零的D-數(shù)列”(只要求依次寫出該數(shù)列的前五項);

(2) D-數(shù)列中,,,數(shù)列滿足,,寫出數(shù)列的通項公式,并分別判斷當時,的極限是否存在,如果存在,求出其極限值(若不存在不需要交代理由);

(3) 證明: D-數(shù)列中的最大項為,證明: .

【答案】(1) ;(2) ,不存在,存在,;(3) 證明見解析.

【解析】

1)依照定義寫出數(shù)列即可.

2)計算可得為周期數(shù)列,且周期為3,故可得的通項公式,根據(jù)通項公式可判斷數(shù)列的極限存在與否.

3)利用反證法可證明.

(1) 等等.

(2) 因為,,故,,

為周期數(shù)列,且周期為3,其通項公式為.

的極限不存在.

時,,所以的極限存在,.

(3) 由題設有.

假設.

注意到.

故對一切,均有,這與的最大項為矛盾,從而假設不成立,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的通項公式為, ),數(shù)列定義如下:對于正整數(shù) 是使得不等式成立的所有中的最小值.

1)若, ,求;

2)若, ,求數(shù)列的前項和公式;

3)是否存在,使得 ?如果存在,求的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:在直角坐標系中,設橢圓的左右兩個焦點分別為、.過右焦點軸垂直的直線與橢圓C相交,其中一個交點為.

1)求橢圓C的方程;

2)設橢圓C的一個頂點為,求點M到直線的距離;

3)過中點的直線交橢圓于P、Q兩點,求長的最大值以及相應的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設關于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(αβ),函數(shù)

(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);

(2)當a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于點、直線,我們稱為點到直線的方向距離.

1)設橢圓上的任意一點到直線,的方向距離分別為,求的取值范圍.

2)設點、到直線的方向距離分別為、,試問是否存在實數(shù),對任意的都有成立?若存在,求出的值;不存在,說明理由.

3)已知直線和橢圓,設橢圓的兩個焦點,到直線的方向距離分別為滿足,且直線軸的交點為、與軸的交點為,試比較的長與的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是拋物線的焦點,直線與拋物線相切于點,連接交拋物線于另一點,過點的垂線交拋物線于另一點.

1)若,求直線的方程;

2)求三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合是集合的子集,對于,定義,給出下列三個結論:①存在的兩個不同子集,使得任意都滿足;②任取的兩個不同子集,對任意都有;③任取的兩個不同子集,對任意都有;其中,所有正確結論的序號是(

A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知點M,N的極坐標分別為,直線l的方程為.

1)求以線段MN為直徑的圓C的極坐標方程;

2)求直線l被(1)中的圓C所截得的弦長.

查看答案和解析>>

同步練習冊答案