函數(shù)y=
x2-2x-8
的單調(diào)減區(qū)間是
 
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=x2-2x-8≥0,求得x的范圍,可得函數(shù)的定義域,且y=
t
,本題即求函數(shù)t在函數(shù)y的定義域內(nèi)的減區(qū)間.再利用二次函數(shù)的性質(zhì)可得函數(shù)t在函數(shù)y的定義域內(nèi)的減區(qū)間.
解答: 解:令t=x2-2x-8=(x-4)(x+2)≥0,求得x≤-2,或x≥4,故函數(shù)的定義域為(-∞,-2]∪[4,+∞),且y=
t

故本題即求函數(shù)t在函數(shù)y的定義域內(nèi)的減區(qū)間.
再利用二次函數(shù)的性質(zhì)可得函數(shù)t在函數(shù)y的定義域內(nèi)的減區(qū)間為(-∞,-2],
故答案為:(-∞,-2].
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|x-2|x的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式ax2+bx+c<0的解集為(-∞,-2)∪(3,+∞),則不等式cx2+bx+a>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sinxcosx-cos(2x-
π
6
).
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[0,
3
]時,求函數(shù)f(x)的最大值及取得最大值時的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示.試依圖推出:
(1)f(x)的最小正周期;
(2)f(x)的單調(diào)遞增區(qū)間;
(3)使f(x)取最小值的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從裝有2個白球和2個藍球的口袋中任取2個球,那么對立的兩個事件是(  )
A、“恰有一個白球”與“恰有兩個白球”
B、“至少有一個白球”與“至少有-個藍球”
C、“至少有-個白球”與“都是藍球”
D、“至少有一個白球”與“都是白球”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對大于1的自然數(shù)m的三次冪,可用奇數(shù)進行以下方式的拆分:
23=3+5
33=7+9+11
43=13+15+17+19

若121在m3的拆分中,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,a≠1,函數(shù)f(x)=loga|ax2-x|在[3,4]上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=2x-3•2-x
(1)求函數(shù)f(x)的解析式;
(2)求方程f(x)=
1
2
的負數(shù)解.

查看答案和解析>>

同步練習(xí)冊答案