設(shè)函數(shù)f(x)=
3
sinx-
sin(
π
2
-2x)sin(
π
2
-x)
cos(π+x)

(Ⅰ)求f(x)的最值;
(Ⅱ)當(dāng)θ∈(0,  
π
2
)
時(shí),若f(θ)=1,求θ的值.
(Ⅰ)f(x)=
3
sinx-
sin(
π
2
-2x)sin(
π
2
-x)
cos(π+x)
=
3
sinx-
cos2xcosx
-cosx
=
3
sinx+cos2x

=
3
sinx+1-2sin2x=-2(sinx-
3
4
)2+
11
8

故當(dāng)sinx=
3
4
時(shí),f(x)max=
11
8

當(dāng)sinx=-1時(shí),f(x)min=
3
×(-1)+1-2×(-1)2=-
3
-1

(Ⅱ)由f(θ)=1?
3
sinθ-
sin(
π
2
-2θ)sin(
π
2
-θ)
cos(π+θ)
=1?
3
sinθ+cos2θ=1

即:
3
sinθ+1-2sin2θ=1?2sin2θ-
3
sinθ=0?sinθ(2sinθ-
3
)=0

θ∈(0,  
π
2
)
,
sinθ=
3
2
,從而θ=
π
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3
sinθ
3
x3+
cosθ
2
x2+4x-1
,其中θ∈[0, 
6
]
,則導(dǎo)數(shù)f'(-1)的取值范圍(  )
A、[3,6]
B、[3, 4+
3
]
C、[4-
3
, 6]
D、[4-
3
, 4+
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(
3
sinωx+cosωx)cosωx
,(其中0<ω<2)
若f(x)的最小正周期為π,求當(dāng)-
π
6
≤x≤
π
3
時(shí),f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣東模擬)設(shè)函數(shù)f(x)=3sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
的圖象關(guān)于直線x=
2
3
π
對(duì)稱,它的周期是π,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=3sin(ωx+
π
6
)
,(ω>0),x∈(-∞,+∞),且以
π
2
為最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)已知f(
α
4
+
π
12
)=
9
5
,求sinαtanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=3sin(2x-
34
π)
,
(1)求y=f(x)的振幅,周期和初相;
(2)求y=f(x)的最大值并求出此時(shí)x值組成的集合.
(3)求y=f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案