精英家教網 > 高中數學 > 題目詳情

如圖,F是橢圓的右焦點,以點F為圓心的圓過原點O和橢圓的右頂點,設P是橢圓上的動點,P到橢圓兩焦點的距離之和等于4.

(1)求橢圓和圓的標準方程;
(2)設直線l的方程為x=4,PM⊥l,垂足為M,是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

(1)=1   (x-1)2+y2=1
(2) 存在點P,使得△FPM為等腰三角形

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上且過點P,離心率是.
(1)求橢圓C的標準方程;
(2)直線l過點E (-1,0)且與橢圓C交于A,B兩點,若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線Cy2=2px(p>0)的焦點為F,拋物線C與直線l1y=-x的一個交點的橫坐標為8.
(1)求拋物線C的方程;
(2)不過原點的直線l2l1垂直,且與拋物線交于不同的兩點AB,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,橢圓的左焦點為,右焦點為,過的直線交橢圓于兩點, 的周長為8,且面積最大時,為正三角形.

(1)求橢圓的方程;
(2)設動直線與橢圓有且只有一個公共點,且與直線相交于點,證明:點在以為直徑的圓上.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓C:=1(a>b>0)過點(0,4),離心率為.
(1)求C的方程;
(2)求過點(3,0)且斜率為的直線被C所截線段的中點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,直線與圓相切,且交橢圓兩點,c是橢圓的半焦距,.
(1)求m的值;
(2)O為坐標原點,若,求橢圓的方程;
(3)在(2)的條件下,設橢圓的左右頂點分別為A,B,動點,直線與直線分別交于M,N兩點,求線段MN的長度的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓M=1(a>)的右焦點為F1,直線lxx軸交于點A,若=2 (其中O為坐標原點).
(1)求橢圓M的方程;
(2)設P是橢圓M上的任意一點,EF為圓Nx2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點),求·的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,點P(0,-1)是橢圓C1=1(a>b>0)的一個頂點,C1的長軸是圓C2x2y2=4的直徑.l1l2是過點P且互相垂直的兩條直線,其中l1交圓C2A,B兩點,l2交橢圓C1于另一點D.

(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的焦點為雙曲線的一個焦點,且兩條曲線都經過點.

(1)求這兩條曲線的標準方程;
(2)已知點在拋物線上,且它與雙曲線的左,右焦點構成的三角形的面積為4,求點 的坐標.

查看答案和解析>>

同步練習冊答案