設橢圓C:=1(a>b>0)過點(0,4),離心率為.
(1)求C的方程;
(2)求過點(3,0)且斜率為的直線被C所截線段的中點坐標.

(1) =1   (2)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,離心率為,若不過點A的動直線l與橢圓C相交于P,Q兩點,且·=0.

(1)求橢圓C的方程.
(2)求證:直線l過定點,并求出該定點N的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線C:的離心率為,左頂點為(-1,0)。
(1)求雙曲線方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A、B,且線段AB的中點在圓上,求m的值和線段AB的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知命題:方程所表示的曲線為焦點在軸上的橢圓;命題:實數(shù)滿足不等式.
(1)若命題為真,求實數(shù)的取值范圍;
(2)若命題是命題的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的對稱軸為坐標軸,焦點是,又點在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,F(xiàn)是橢圓的右焦點,以點F為圓心的圓過原點O和橢圓的右頂點,設P是橢圓上的動點,P到橢圓兩焦點的距離之和等于4.

(1)求橢圓和圓的標準方程;
(2)設直線l的方程為x=4,PM⊥l,垂足為M,是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動點P與平面上兩定點連線的斜率的積為定值.
(1)試求動點P的軌跡方程C.
(2)設直線與曲線C交于M、N兩點,當|MN|=時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓,直線與圓相切,且交橢圓兩點,c是橢圓的半焦距, 
(1)求m的值;
(2)O為坐標原點,若,求橢圓的方程;
(3)在(2)的條件下,設橢圓的左右頂點分別為A,B,動點,直線與直線分別交于M,N兩點,求線段MN的長度的最小值 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的離心率為,左、右焦點分別為,點G在橢圓C上,且的面積為3.
(1)求橢圓C的方程:
(2)設橢圓的左、右頂點為A,B,過的直線與橢圓交于不同的兩點M,N(不同于點A,B),探索直線AM,BN的交點能否在一條垂直于軸的定直線上,若能,求出這條定直線的方程;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案