不等式ln2x+lnx<0的解集是 ( 。
A、(e-1,1)
B、(1,e)
C、(0,1)
D、(0,e-1
考點:其他不等式的解法,指、對數(shù)不等式的解法
專題:計算題,函數(shù)的性質(zhì)及應用,不等式的解法及應用
分析:令lnx=t,則t2+t<0,再由二次不等式的解法和對數(shù)函數(shù)的單調(diào)性,即可得到解集.
解答: 解:令lnx=t,
則t2+t<0,
則-1<t<0,
即-1<lnx<0,
解得
1
e
<x<1.
則解集為(e-1,1).
故選A.
點評:本題考查對數(shù)不等式的解法,考查換元法和二次不等式的解法,考查對數(shù)函數(shù)的性質(zhì),考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點A(-1,2),B(2,5),C(1,7)
(1)求AB邊上高線所在直線方程
(2)求BC邊上中垂線所在直線方程
(3)求AC邊中線所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2xcosφ+cos2xsinφ(x∈R,O<φ<π),f(
π
4
)=
3
2

(1)求f(x)的解析式;
(2)若f(
a
2
-
π
3
)=
5
13
,a∈(
π
2
,π),求sina的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx-acosx)-a,其中a為常數(shù),求函數(shù)y=f(x)的圖象關于直線x=
π
8
對稱的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
1-sin22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義在R上的偶函數(shù),且f(x)在區(qū)間[0,+∞)上單調(diào)遞減,則( 。
A、f(-3)<f(-2)<f(1)
B、f(1)<f(-2)<f(3)
C、f(-2)<f(1)<f(3)
D、f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足
S9
9
-a2=6,其中sn為數(shù)列{an}的前n項和,若存在兩項am、an使得am+an=2a1+14,則
1
m
+
4
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角a是第三象限角,且f(a)=
sin(π-a)sinacos(π+a)
sin(
π
2
-a)cos(a+
π
2
)tan(-a)

(Ⅰ)化簡f(a)
(Ⅱ)若sin(2π-a)=
1
5
,求f(a)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={1,2,3,4,5},集合A={1,3,4},B={2,3,5}則(∁UA)∪B=(  )
A、{2}
B、{2,5}
C、{2,3,5}
D、{2,3,4,5}

查看答案和解析>>

同步練習冊答案