11.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,2sinA+2sinB=($\sqrt{3}$+1)sin(A+B),c=2.
(1)求△ABC的周長;
(2)若△ABC的面積為$\frac{\sqrt{3}}{2}$,求C.

分析 (1)由2sinA+2sinB=($\sqrt{3}$+1)sin(A+B),可得2a+2b=$(\sqrt{3}+1)$c,又c=2,即可得出.
(2)由c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC=22,可得ab=$\frac{\sqrt{3}}{1+cosC}$.又$\frac{1}{2}absinC$=$\frac{\sqrt{3}}{2}$,代入化簡即可得出.

解答 解:(1)∵2sinA+2sinB=($\sqrt{3}$+1)sin(A+B),∴2a+2b=$(\sqrt{3}+1)$c,又c=2,
∴a+b=$\sqrt{3}$+1.
∴△ABC的周長=a+b+c=$\sqrt{3}$+3.
(2)∵c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC=22,
∴ab=$\frac{\sqrt{3}}{1+cosC}$.
∵$\frac{1}{2}absinC$=$\frac{\sqrt{3}}{2}$,∴$\frac{\sqrt{3}}{1+cosC}$sinC=$\sqrt{3}$,
∴sinC=1+cosC,
又sin2C+cos2C=1,
∴(1+cosC)2+cos2C=1,
cos2C+cosC=0,
∵C∈(0,π),
∴$C=\frac{π}{2}$.

點評 本題考查了正弦定理余弦定理的應用、三角形面積計算公式、同角三角函數(shù)基本關系式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.一個球與一個正三棱柱(底面是正三角形,側棱垂直于底面的三棱柱)的三個側面和兩個底面都相切.已知這個球的體積是$\frac{9π}{2}$,那么這個三棱柱的體積是( 。
A.81$\sqrt{3}$B.$\frac{81}{2}$$\sqrt{3}$C.$\frac{81}{4}$$\sqrt{3}$D.$\frac{81}{16}$$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=arcsin(2x+1)(-1≤x≤0),則f-1($\frac{π}{6}$)=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知f(x)=x2+ax+b,a,b∈R,不等式x>f(x)的解集是(-2,4),則f(x)>f(f(x))的解是(-3,-2)∪(3,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知2sinα=1+cosα,則tan$\frac{α}{2}$=$±\frac{1}{2}$或無解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知命題p:函數(shù)y=$\frac{x+1}{x}$的圖象關于點(0,1)對稱,q:函數(shù)y=$\frac{{x}^{2}+1}{x}$的極小值為2.給出下列四個命題:①p∨q;②p∧q③(¬p)∨q;④p∧(¬q).其中真命題是①②③.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.以下四個命題,屬于組合問題的是( 。
A.從3個不同的小球中,取出2個排成一列
B.老師在排座位時將甲、乙兩位同學安排為同桌
C.在電視節(jié)目中,主持人從100位幸運觀眾中選出2名幸運之星
D.從某班40名學生中選取5名學生,并從低到高依次排列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.有一匹叫Harry的馬,參加了100場賽馬比賽,贏了20場,輸了80場,在這100場比賽中,有30場是下雨天,70場是晴天,在30場下雨天的比賽中,Harry贏了15場.如果明天下雨,Harry參加賽馬獲勝的概率是(  )
A.$\frac{1}{5}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知實數(shù)1,m,4構成一個等比數(shù)列,則圓錐曲線$\frac{{x}^{2}}{m}$+y2=1的離心率為( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{2}}{2}$或$\frac{\sqrt{6}}{2}$

查看答案和解析>>

同步練習冊答案