【題目】已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.

【答案】
(1)解:設等差數(shù)列{an}的公差為d,則an=a1+(n﹣1)d

由a1=1,a3=﹣3,可得1+2d=﹣3,解得d=﹣2,

從而,an=1+(n﹣1)×(﹣2)=3﹣2n;


(2)解:由(1)可知an=3﹣2n,

所以Sn= =2n﹣n2,

進而由Sk=﹣35,可得2k﹣k2=﹣35,

即k2﹣2k﹣35=0,解得k=7或k=﹣5,

又k∈N+,故k=7為所求.


【解析】(1)設出等差數(shù)列的公差為d,然后根據(jù)首項為1和第3項等于﹣3,利用等差數(shù)列的通項公式即可得到關于d的方程,求出方程的解即可得到公差d的值,根據(jù)首項和公差寫出數(shù)列的通項公式即可;(2)根據(jù)等差數(shù)列的通項公式,由首項和公差表示出等差數(shù)列的前k項和的公式,當其等于﹣35得到關于k的方程,求出方程的解即可得到k的值,根據(jù)k為正整數(shù)得到滿足題意的k的值.
【考點精析】解答此題的關鍵在于理解等差數(shù)列的通項公式(及其變式)的相關知識,掌握通項公式:,以及對等差數(shù)列的前n項和公式的理解,了解前n項和公式:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠對新研發(fā)的一種產(chǎn)品進行試銷,得到如下數(shù)據(jù)表:

(1)根據(jù)上表求出回歸直線方程,并預測當單價定為8.3元時的銷量;

(2)如果該工廠每件產(chǎn)品的成本為5.5元,利用所求的回歸方程,要使得利潤最大,單價應該定為多少?

附:線性回歸方程中斜率和截距最小二乘估計計算公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知由甲、乙兩位男生和丙、丁兩位女生組成的四人沖關小組,參加由安徽衛(wèi)視推出的大型戶外競技類活動《男生女生向前沖》.活動共有四關,若四關都闖過,則闖關成功,否則落水失敗.設男生闖過一至四關的概率依次是,女生闖過一至四關的概率依次是.

(Ⅰ)求男生甲闖關失敗的概率;

(Ⅱ)設表示四人沖關小組闖關成功的人數(shù),求隨機變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在ABC中,內角A,B,C的對邊分別為a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖如下圖,則該幾何體的體積為( )

A. 18 B. 20 C. 24 D. 12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點作直線分別交軸的正半軸于兩點.

(Ⅰ)當取最小值時,求出最小值及直線的方程;

(Ⅱ)當取最小值時,求出最小值及直線的方程;

(Ⅲ)當取最小值時,求出最小值及直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x﹣φ),且 f(x)dx=0,則函數(shù)f(x)的圖象的一條對稱軸是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|ex﹣a|+| ﹣1|,其中a,x∈R,e是自然對數(shù)的底數(shù),e=2.71828…
(1)當a=0時,解不等式f(x)<2;
(2)求函數(shù)f(x)的單調增區(qū)間;
(3)設a≥ ,討論關于x的方程f(f(x))= 的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率等于40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果.經(jīng)隨機模擬產(chǎn)生了如下2-組隨機數(shù):

907 966 191 925 271 932 812 458

569 683 431 257 393 027 556 488

730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為__________

查看答案和解析>>

同步練習冊答案