三人向同一靶位射擊,中靶的概率分別為
1
6
、
1
4
1
3
,如果三人都打一次靶,求恰好一人中靶的概率.
考點:互斥事件的概率加法公式
專題:計算題,概率與統(tǒng)計
分析:三人都打一次靶,恰好一人中靶,利用互斥事件的概率公式,即可得出結論.
解答: 解:∵三人向同一靶位射擊,中靶的概率分別為
1
6
1
4
、
1
3

∴三人都打一次靶,恰好一人中靶的概率為
1
6
3
4
2
3
+
5
6
1
4
2
3
+
5
6
3
4
1
3
=
31
72
點評:本題考查互斥事件的概率公式,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知全集U={0,1,2,3,4},集合A={1,2},B={2,3,4},則B∩∁UA的子集個數(shù)有( 。
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2+2x-a=0,
(1)若方程在x∈[-2,1]內只有一解,求a的取值范圍;
(2)若方程在x∈[-2,1]內有兩解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
x2-2x+2
2x-2
≥a
對任意的x∈(1,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設不等式組
x>0
y>0
y≤-nx+3n
所表示的平面區(qū)域為Dn,記Dn內的整點個數(shù)為an(n∈N*)(整點即橫坐標和縱坐標均為整數(shù)的點).
(1)求證:數(shù)列{an}的通項公式是an=3n(n∈N*).
(2)記數(shù)列{an}的前n項和為Sn,且Tn=
Sn
3•2n-1
.若對于一切的正整數(shù)n,總有Tn≤m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
sin2(1+
1
tanα
)+cos2(1+tanα)
)=sinα+cosα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,曲線C的參數(shù)方程為
x=acosφ
y=bsinφ
(a>b>0,φ為參數(shù)),已知曲線C上的點M(1,
3
2
)對應的參數(shù)φ=
π
3

(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)在以O為極點,x軸的正半軸為極軸的極坐標系中,若點A(ρ1,θ),B(ρ2,θ+
π
2
)在曲線C上,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:
n
k=1
1
k2
5
3
,(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2+Dx-6y+1=0上有兩點P、Q關于直線x-y+4=0對稱.
(1)求圓C的半徑;
(2)若OP⊥OQ,O為坐標原點,求PQ方程;
(3)直線l:(2m-1)x-(m-1)y+8m-6=0被圓C截得弦長最短時,求m的值.

查看答案和解析>>

同步練習冊答案