15.成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2,5,13后成為等比數(shù)列{bn}中的b3,b4,b5.?dāng)?shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn+$\frac{5}{4}$}是等比數(shù)列.

分析 設(shè)成等差數(shù)列的三個正數(shù)分別為a-d,a,a+d,則a-d+a+a+d=15,解得a=5.根據(jù)這三個數(shù)分別加上2,5,13后成為等比數(shù)列{bn}中的b3,b4,b5.可得(5+5)2=(5-d+2)(5+d+13),解得:d=2.可得b1與公比q.l利用求和公式可得Sn,即可證明.

解答 證明:設(shè)成等差數(shù)列的三個正數(shù)分別為a-d,a,a+d,則a-d+a+a+d=15,解得a=5.
∵這三個數(shù)分別加上2,5,13后成為等比數(shù)列{bn}中的b3,b4,b5
∴(5+5)2=(5-d+2)(5+d+13),解得:d=-13(舍去),或2.
∴d=2時,b3=5,b4=10,b5=20.可得公比q=$\frac{10}{5}$=2.
$_{1}×{2}^{2}$=5,解得b1=$\frac{5}{4}$.
∴Sn=$\frac{\frac{5}{4}({2}^{n}-1)}{2-1}$=5×2n-2-$\frac{5}{4}$,
∴Sn+$\frac{5}{4}$=5×2n-2,
∴數(shù)列{Sn+$\frac{5}{4}$}是等比數(shù)列,公比為2,首項(xiàng)為$\frac{5}{2}$.

點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.由數(shù)字1,3,4,6,x(0≤x≤9,x∈N)五個數(shù)字組成沒有重復(fù)數(shù)字的五位數(shù),所有這些五位數(shù)各位數(shù)字之和為2640,則x=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a=sin147°,b=cos55°,c=tan215°,則a,b,c的大小關(guān)系是(  )
A.a<b<cB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=x3-2x2+x(x>0).
(1)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)G(a)=$\frac{F(a)}{a}$的最小值;
(2)設(shè)函數(shù)g(x)=1nx-(2x2-4x-t)(t為常數(shù)),若使g(x)-m≤x≤f(x)-m在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個,求實(shí)數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若不等式$\frac{lnx}{x+1}+\frac{1}{x}>\frac{lnx}{x-1}+\frac{k}{x}$在x>0且x≠1時恒成立,則k的取值范圍是(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時,負(fù)的一方在下一局當(dāng)裁判,假設(shè)每局比賽中,甲勝乙的概率為$\frac{1}{2}$,甲勝丙、乙勝丙的概率都為$\frac{2}{3}$,各局比賽的結(jié)果都相互獨(dú)立,第1局甲當(dāng)裁判.
(Ⅰ)求第三局甲當(dāng)裁判的概率;
(Ⅱ)記前4局中乙當(dāng)裁判的次數(shù)為X,求X的概率分布與數(shù)學(xué)期望;
(Ⅲ)已知第三局甲當(dāng)裁判,求前4局中乙當(dāng)裁判的次數(shù)恰好為1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,過點(diǎn)A(6,4)作曲線f(x)=$\sqrt{4x-8}$的切線l.
(1)求切線l的方程;
(2)求切線l、x軸及曲線f(x)=$\sqrt{4x-8}$所圍成的封閉圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f'(x)是函數(shù)f(x)(x∈R且x≠0)的導(dǎo)函數(shù),當(dāng)x>0時,xf'(x)-f(x)<0,記a=$\frac{{f({{2^{0.2}}})}}{{{2^{0.2}}}},b=\frac{{f({{{0.2}^2}})}}{{{{0.2}^2}}},c=\frac{{f({{{log}_2}5})}}{{{{log}_2}5}}$,則( 。
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=ex-ax-1
(1)若函數(shù)f(x)在R上單調(diào)遞增,求α的取值范圍;
(2)當(dāng)α>0時,設(shè)函數(shù)f(x)的最小值為g(a),求證:g(a)≤0.

查看答案和解析>>

同步練習(xí)冊答案