若拋物線的焦點與橢圓的左焦點重合,則的值為(   )
A.-8B.-16C.D.
A

試題分析:橢圓的焦點在x軸上,拋物線焦點與橢圓左焦點重合,所以拋物線的焦點為,橢圓,所以,可得左焦點為,那么,所以
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓左、右焦點分別為F1、F2,點P(2,),點F2在線段PF1的中垂線上.
(1)求橢圓C的方程;
(2)設直線與橢圓C交于M、N兩點,直線F2M與F2N的斜率互為相反數(shù),求證:直線l過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F是橢圓C的一個焦點,B是短軸的一個端點,線段BF的延長線交C于點D,且=2,則C的離心率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓C:的左、右焦點為、,離心率為,過的直線交C于A、B兩點,若的周長為,則C的方程為
A.    B.   C.   D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的兩焦點分別為,長軸長為6,
⑴求橢圓C的標準方程;
⑵已知過點(0,2)且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度。.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是平面兩定點,點滿足,則點的軌跡方程是          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓+=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.點P(a,b)滿足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設直線PF2與橢圓相交于A,B兩點,若直線PF2與圓(x+1)2+=16相交于M,N兩點,且|MN|=|AB|,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在棱長為的正方體中,點是正方體棱上一點(不包括棱的端點),,
①若,則滿足條件的點的個數(shù)為________;
②若滿足的點的個數(shù)為,則的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(2011•山東)已知雙曲線和橢圓有相同的焦點,且雙曲線的離心率是橢圓離心率的兩倍,則雙曲線的方程為 _________ 

查看答案和解析>>

同步練習冊答案