已知函數(shù)f(x)=asinx-bcosx(a、b為常數(shù),a≠0,x∈R)在處取得最小值,則函數(shù)是( )
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn)對稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)對稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
【答案】分析:先對函數(shù)f(x)運(yùn)用三角函數(shù)的輔角公式進(jìn)行化簡求出最小正周期,根據(jù)正弦函數(shù)的最值和取得最值時(shí)的x的值可求出函數(shù)的解析式,進(jìn)而得到答案.
解答:解:已知函數(shù)f(x)=asinx-bcosx(a、b為常數(shù),a≠0,x∈R),
的周期為2π,若函數(shù)在處取得最小值,不妨設(shè)
則函數(shù)=,
所以是奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱,
故選D.
點(diǎn)評:本題主要考查輔角公式、三角函數(shù)的奇偶性和對稱性.對于三角函數(shù)的基本性質(zhì)要熟練掌握,這是解題的根本.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案