10.已知雙曲線過(guò)點(diǎn)(2,3),漸進(jìn)線方程為y=±$\sqrt{3}$x,則雙曲線的標(biāo)準(zhǔn)方程是( 。
A.$\frac{{7{x^2}}}{16}-\frac{y^2}{12}=1$B.$\frac{y^2}{3}-\frac{x^2}{2}=1$C.${x^2}-\frac{y^2}{3}=1$D.$\frac{{3{y^2}}}{23}-\frac{x^2}{23}=1$

分析 根據(jù)題意,由雙曲線的漸近線方程可以設(shè)其方程為$\frac{{y}^{2}}{3}$-x2=λ,將點(diǎn)(2,3)代入其中可得$\frac{{3}^{2}}{3}$-22=λ,解可得λ的值,變形即可得答案.

解答 解:根據(jù)題意,雙曲線的漸進(jìn)線方程為y=±$\sqrt{3}$x,
則可以設(shè)其方程為$\frac{{y}^{2}}{3}$-x2=λ,(λ≠0)
又由其過(guò)點(diǎn)(2,3),則有$\frac{{3}^{2}}{3}$-22=λ,
解可得:λ=-1,
則雙曲線的標(biāo)準(zhǔn)方程為:x2-$\frac{{y}^{2}}{3}$=1;
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),關(guān)鍵是由漸近線方程設(shè)出雙曲線的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知f(x)是定義在R上的奇函數(shù),滿足f(x)+f(2-x)=0,且當(dāng)x∈[0,1)時(shí),f(x)=ln(ex+$\frac{x}{x+1}$),則函數(shù)g(x)=f(x)+$\frac{1}{3}$x在區(qū)間[-6,6]上的零點(diǎn)個(gè)數(shù)是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)$z=\frac{1}{1+i}$,則z的虛部為( 。
A.$\frac{1}{2}i$B.$-\frac{1}{2}i$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.根據(jù)“2015年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)”中公布的數(shù)據(jù),從2011 年到2015 年,我國(guó)的第三產(chǎn)業(yè)在GDP中的比重如下:
年份20112012201320142015
年份代碼x12345
第三產(chǎn)業(yè)比重y(%)44.345.546.948.150.5
(1)在所給坐標(biāo)系中作出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)建立第三產(chǎn)業(yè)在GDP中的比重y關(guān)于年份代碼x的回歸方程;
(3)按照當(dāng)前的變化趨勢(shì),預(yù)測(cè)2017 年我國(guó)第三產(chǎn)業(yè)在GDP中的比重.
附注:回歸直線方程$\widehaty=\widehata+\widehatbx$中的斜率和截距的最小二乘估計(jì)公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=log2x,x∈[1,8],則不等式1≤f(x)≤2成立的概率是( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知$\overrightarrow{m}$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow{n}$=(cosωx,-cosωx)(ω>0,x∈R),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$且f(x)的圖象上相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若△ABC中內(nèi)角A,B,C的對(duì)邊分別為a,b,c且b=$\sqrt{7}$,f(B)=0,sinA=3sinC,求a,c的值及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=lnx-ex-a+a(e是自然對(duì)數(shù)的底數(shù) ).
(1)當(dāng)a=0是,求證:f(x)<-2;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{x-1}},x>1\\ tan\frac{πx}{3},x≤1\end{array}\right.$則$f(\frac{1}{f(2)})$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某學(xué)校需從3名男生和2名女生中選出4人,分派到甲、乙、丙三地參加義工活動(dòng),其中甲地需要選派2人且至少有1名女生,乙地和丙地各需要選派1人,則不同的選派方法的種數(shù)是(  )
A.18B.24C.36D.42

查看答案和解析>>

同步練習(xí)冊(cè)答案