【題目】已知三棱錐的直觀圖和三視圖如下:
(1)求證: 底面;
(2)求三棱錐的體積;
(3)求三棱錐的側(cè)面積.
【答案】(1)詳見(jiàn)解析;(2)8;(3) .
【解析】試題分析:(1)證明線面垂直,只需證明直線垂直于平面內(nèi)的兩條相交直線;(2) ∵底面.∴是三棱錐的高,根據(jù)三棱錐的體積公式求得;(3)根據(jù)邊長(zhǎng)求得側(cè)面三角形的形狀,分別求出面積相加即可.
試題解析:(1)證明:由直觀圖和三視圖知:
, ,又, 平面, 平面.
所以: 底面.
(2)∵底面.∴是三棱錐的高
∴三棱錐的體積:
(3)在中: ,
∴
∴三棱錐的側(cè)面積
點(diǎn)睛: 判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條直線也垂直于這個(gè)平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個(gè)平面過(guò)另一個(gè)平面的一條垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某射擊運(yùn)動(dòng)員每次擊中目標(biāo)的概率都是0.8.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員射擊4次,至多擊中1次的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒(méi)有擊中目標(biāo),2,3,4,5,6,7,8,9表示擊中目標(biāo);因?yàn)樯鋼?/span>4次,故以每4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
5 727 0 293 7 140 9 857 0 347
4 373 8 636 9 647 1 417 4 698
0 371 6 233 2 616 8 045 6 011
3 661 9 597 7 424 6 710 4 281
據(jù)此估計(jì),該射擊運(yùn)動(dòng)員射擊4次至多擊中1次的概率為( )
A. 0.95 B. 0.1
C. 0.15 D. 0.05
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出四種說(shuō)法:
①用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小,說(shuō)明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過(guò)樣本點(diǎn)的中心( ).
其中正確的說(shuō)法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2015高考天津,文20】已知函數(shù)
(I)求的單調(diào)區(qū)間;
(II)設(shè)曲線與軸正半軸的交點(diǎn)為P,曲線在點(diǎn)P處的切線方程為,求證:對(duì)于任意的正實(shí)數(shù),都有;
(III)若方程有兩個(gè)正實(shí)數(shù)根且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:
(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2.
(ⅰ)利用該正態(tài)分布,求P(187.8<Z<212.2);
(ⅱ)某用戶從該企業(yè)購(gòu)買(mǎi)了100件這種產(chǎn)品,記X表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)的產(chǎn)品件數(shù).利用(ⅰ)的結(jié)果,求E(X).
附: ≈12.2.若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司試銷(xiāo)某種“上海世博會(huì)”紀(jì)念品,每件按30元銷(xiāo)售,可獲利50%,設(shè)每件紀(jì)念品的成本為a元.
(1)試求a的值;
(2)公司在試銷(xiāo)過(guò)程中進(jìn)行了市場(chǎng)調(diào)查,發(fā)現(xiàn)銷(xiāo)售量y(件)與每件售價(jià)x(元)滿足關(guān)系y=-10x+800.設(shè)每天銷(xiāo)售利潤(rùn)為W(元),求每天銷(xiāo)售利潤(rùn)W(元)與每件售價(jià)x(元)之間的函數(shù)解析式;當(dāng)每件售價(jià)為多少時(shí),每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若曲線上點(diǎn)處的切線過(guò)點(diǎn),求函數(shù)的單調(diào)減區(qū)間;
(Ⅱ)若函數(shù)在上無(wú)零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017屆云南省云南師范大學(xué)附屬中學(xué)高三高考適應(yīng)性月考(五)文數(shù)】已知函數(shù).
(1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為8的菱形,∠BAD=,若PA=PD=5,平面PAD⊥平面ABCD.
(1)求四棱錐P﹣ABCD的體積;
(2)求證:AD⊥PB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com