【題目】下面給出四種說法:
①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點(diǎn)的中心( ).
其中正確的說法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+1,x∈R.
(1)分別計(jì)算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;
(2)由(1)你發(fā)現(xiàn)了什么結(jié)論?并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對任意實(shí)數(shù), .
(1)在上是單調(diào)遞減的,求實(shí)數(shù)的取值范圍;
(2)若對任意恒成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入 萬元廣告費(fèi)用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的.
(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;
(Ⅱ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到上表:表中的數(shù)據(jù)顯示與之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;
(Ⅲ)若廣告投入萬元時(shí),實(shí)際銷售收益為.萬元,求殘差.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域?yàn)?/span>的函數(shù),若滿足①;②當(dāng),且時(shí),都有;③當(dāng),且時(shí), ,則稱為“偏對函數(shù)”.現(xiàn)給出四個(gè)函數(shù): ; . 則其中是“偏對稱函數(shù)”的函數(shù)個(gè)數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩種商品,經(jīng)營銷售這兩種商品所得的利潤依次為M萬元和N萬元,它們與投入資金萬元的關(guān)系可由經(jīng)驗(yàn)公式給出:M=,N= (≥1).今有8萬元資金投入經(jīng)營甲、乙兩種商品,且乙商品至少要求投資1萬元,
設(shè)投入乙種商品的資金為萬元,總利潤;
(2)為獲得最大利潤,對甲、乙兩種商品的資金投入分別是多少?共能獲得多大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,,和都是邊長為2的等邊三角形,設(shè)在底面的射影為.
(1)求證:是中點(diǎn);
(2)證明:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
如圖,在正四面體中,分別是棱的中點(diǎn).
(1)求證:四邊形是平行四邊形;
(2)求證:平面;
(3)求證:平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com