已知全集U=R,集合A={x|x2<4},B={x|
1-x
x
≤0},A∩(∁UB)=( 。
A、(0,1)
B、[0,1)
C、(-2,0)∪[1,2)
D、[-2,2)
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:分別求解二次不等式和分式不等式化簡集合A,與B,求出B的補(bǔ)集,然后利用交集運(yùn)算求解.
解答: 解:∵A={x|x2<4}=(-2,2),
B={x|
1-x
x
≤0}={x|x<0或x≥1},
∴∁UB=(0,1),
A∩(∁UB)=(0,1).
故選:A.
點(diǎn)評:本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了二次不等式和分式不等式的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y取值如表:畫散點(diǎn)圖分析可知:y與x線性相關(guān),且求得回歸方程為
?
y
=bx+a中a=50,猜想x=4時(shí),y的值為(  )
x141286
y22253538
A、40B、42C、44D、46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x-2
3
cos2x+
3
+a.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)x∈[0,
π
2
]時(shí),f(x)的最小值是-2,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值:
(1)(
9
4
 
1
2
-(-
3
5
0-(
8
27
 -
1
3
;
(2)lg12.5-lg
5
8
+lg
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=90.8,b=270.45,c=(
1
3
-1.5,則a,b,c大小關(guān)系為( 。
A、a>b>c
B、a<b<c
C、a>c>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|-2<x<4},B={y|y=x+1,x∈A},則A∩B=( 。
A、∅
B、{x|1<x<4}
C、{x|-2<x<5}
D、{x|0≤x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|-2<x<4},B={y|y=|x+1|,x∈A},則A∩B=( 。
A、∅
B、{x|1<x<4}
C、{x|-2<x<5}
D、{x|0≤x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A,B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2
-arctanx(x∈R)的反函數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案