由0,1,2,3,4,5六個(gè)數(shù)字可以組成多少個(gè)沒(méi)有重復(fù)的比324105大的數(shù)?
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:根據(jù)題意,分6種情況討論:①首位以是4,5的6位數(shù),②前1位是3的數(shù),③前2位是32的數(shù),④前3位是324的數(shù),⑤前4位是3241,⑥前5位是32410的數(shù)利用排列公式分別求出每種情況下符合條件的6位數(shù)的個(gè)數(shù),由加法原理計(jì)算可得答案.
解答: 根據(jù)題意,分4種情況討論:
①首位以是4,5的6位數(shù)都符合要求,共計(jì)A21A55=240個(gè),
②第一位是3的數(shù),第二位比2大的數(shù)都符合要求A21A44=48個(gè),
③前2位是32,第三位比4大的數(shù)都符合要求A33=6個(gè),
④前3位是324,第四位比1大的數(shù)都符合要求A22=2個(gè),
⑤前4位是3241,第五位比0大的數(shù)都符合要求,有1個(gè),
⑥前5位是32410,第六位比5大的數(shù)沒(méi)有,
根據(jù)分類計(jì)數(shù)原理得,共有240+48+6+2+1=297個(gè).
點(diǎn)評(píng):本題考查排列組合的實(shí)際應(yīng)用,是一個(gè)數(shù)字問(wèn)題,其次注意分類和分步方法的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果a>b>0,那么下列不等式成立的是(  )
A、
1
a
1
b
B、a2<b2
C、log2a<log2b
D、(
1
2
a>(
1
2
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)圓x2+y2=1在矩陣A=
10
02
對(duì)應(yīng)的變換作用下得到曲線F,求曲線F的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為a的正方體ABCD-A′B′C′D′中,如圖E、F分別為棱AB與BC的中點(diǎn),EF∩BD=H;
(Ⅰ)求二面角B′-EF-B的正切值;
(Ⅱ)試在棱B′B上找一點(diǎn)M,使D′M⊥面EFB′,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=10,a2=5,an-an+2=2(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前2n項(xiàng)和為S2n,當(dāng)S2n取最大值時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

射擊比賽中,每位射手射擊隊(duì)10次,每次一發(fā),擊中目標(biāo)得3分,未擊中目標(biāo)得0分,每射擊一次,凡參賽者加2分,已知小李擊中目標(biāo)的概率為0.8.
(1)設(shè)X為小李擊中目標(biāo)的次數(shù),求X的概率分布;
(2)求小李在比賽中的得分的數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知位于y軸左側(cè)的圓C與y軸相切于點(diǎn)(0,1),且被x軸分成的兩段弧長(zhǎng)之比為2:1,過(guò)點(diǎn)H(0,t)的直線l與圓C相交于M,N兩點(diǎn),且以MN為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
(1)求圓C的方程;
(2)當(dāng)t=1時(shí),求出直線l的方程;
(3)求直線OM的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的幾何體中,PB⊥平面ABC,PQ∥AB,PQ=PB=1,AB=BC=
1
2
,∠ABC=90°,M∈PB,N∈PC.
(1)求QC與平面ABC所成角的正弦值.
(2)若QC⊥平面AMN,求線段MN的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是平行四邊形,∠BAD=60°,AD=2,AC=2
3
,E是PC的中點(diǎn).
(Ⅰ)求證:PC⊥BD;
(Ⅱ)若四棱錐P-ABCD的體積為4,求DE與平面PAC所成的角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案